

October 11, 2021

Illinois Power Generating Company 6725 North 500th Street Newton, Illinois, 62448

Subject: USEPA CCR Rule and IEPA Part 845 Rule Applicability Cross-Reference 2021 USEPA CCR Rule Periodic Certification Report Primary Ash Pond, Newton Power Plant, Newton, Illinois

At the request of Illinois Power Generating Company (IPGC), Geosyntec Consultants (Geosyntec) has prepared this letter to document how the attached 2021 United States Environmental Protection Agency (USEPA) CCR Rule Periodic Certification Report (Report) was prepared in accordance with both the Federal USEPA CCR Rule¹ and the state-specific Illinois Environmental Protection Agency (IEPA) Part 845 Rule². Specific sections of the report and the applicable sections of the USEPA CCR Rule and Illinois Part 845 Rule are cross-referenced in **Table 1**. A certification from a Qualified Professional Engineer for each of the CCR Rule sections listed in **Table 1** is provided in Section 10 of the attached Report. This certification statement is also applicable to each section of the Part 845 Rule listed in **Table 1**.

Report Section	USEPA CCR Rule		Illinois Part 845 Rule		
3	§257.73 (a)(2)	Hazard Potential Classification	845.440	Hazard Potential Classification Assessment ³	
4	§257.73 (c)(1)	History of Construction	845.220(a)	Design and Construction Plans (Construction History)	
5	§257.73 (d)(1)	Structural Stability Assessment	845.450 (a) and (c)	Structural Stability Assessment	
6	§257.73 (e)(1)	Safety Factor Assessment	845.460 (a-b)	Safety Factor Assessment	
7	§257.82 (a)(1-3)	Adequacy of Inflow Design Control System Plan	845.510(a), (c)(1), (c)(3)	Hydrologic and Hydraulic Capacity Requirements / Inflow Design Flood Control System Plan	
	§257.82 (b)	Discharge from CCR Unit	845.510(b)	Discharge from CCR Surface Impoundment	

Table 1 – USEPA CCR Rule and Illinois Part 845 Rule Cross-Reference

USEPA_Part_845_Cross-Ref_Letter_Draft_202110111011

¹ United Stated Environmental Protection Agency, 2015. 40 CFR Parts 257 and 261, Hazardous and Solid Waste Management System, Disposal of Coal Combustion Residuals from Electric Utilities, Final Rule.

² State of Illinois, Joint Committee on Administrative Rule, Administrative Code (2021). *Title 35: Environmental Protection, Subtitle G: Waste Disposal, Chapter I: Pollution Control Board, Subchapter j: Coal Combustion Waste Surface Impoundment, Part 845 Standards for the Disposal of Coal Combustion Residuals in Surface Impoundments.*

³ "Significant" and "High" hazard, per the CCR Rule¹, are equivalent to Class II and Class I hazard potential, respectively, per Part 845².

Illinois Power Generating Company October 11, 2021 Page 2

CLOSING

This letter has been prepared to demonstrate that the content and Qualified Professional Engineer Certification of the 2021 Periodic USEPA CCR Rule Certification Report fulfills the corresponding requirements of Part 845 of Illinois Administrative Code listed in **Table 1**.

Sincerely,

Panos Andonyadis, P.E. Senior Engineer

John Seymour, P.E. Senior Principal

Renton

2021 USEPA CCR RULE PERIODIC CERTIFICATION REPORT §257.73(a)(2), (c), (d¹), (e) and §257.82 PRIMARY ASH POND Newton Power Plant Newton, Illinois

Submitted to

Illinois Power Generating Company

6725 North 500th Street Newton, Illinois 62448

Submitted by

consultants

engineers | scientists | innovators

1 McBride and Son Center Drive, Suite 202 Chesterfield, Missouri 63005

October 11, 2021

¹ Except for §257.73(d)(1)(vi).

TABLE OF CONTENTS

Executive S	ummary	1
SECTION 1	Introduction and Background	3
1.1	PAP Description	4
1.2	Report Objectives	6
SECTION 2	2 Comparison of 2015/16 and 2020/21 Site Conditions	7
2.1	Overview	7
2.2	Review of Annual Inspection Reports	7
2.3	Review of Instrumentation Data	7
2.4	Comparison of 2015 to 2020 Surveys	8
2.5	Comparison of 2015 to 2020 Aerial Photography	9
2.6	Comparison of Initial and Periodic Site Visits	9
2.7	Interview with Power Plant Staff	9
SECTION 3	3 Hazard Potential Classification - §257.73(a)(2)	11
3.1	Overview of 2016 Initial Hazard Potential Classification	11
3.2	Review of Initial HPC	11
3.3	Summary of Site Changes Affecting the Initial HPC	11
3.4	Periodic HPC	12
SECTION 4	History of Construction Report - §257.73(c)	13
4.1	Overview of Initial HoC	13
4.2	Summary of Site Affecting the Initial HoC	13
SECTION 5	5 Structural Stability Assessment - §257.73(d)	15
5.1	Overview of Initial SSA	15
5.2	Review of Initial SSA	16
5.3	Summary of Site Changes Affecting the Initial SSA	16
5.4	Periodic SSA	17
SECTION 6	5 Safety Factor Assessment - §257.73(e)(1)	18
6.1	Overview of Initial SFA	18
6.2	Review of Initial SFA	18
6.3	Summary of Site Changes Affecting the Initial SFA	19
6.4	Periodic SFA	19
SECTION 7	7 Inflow Design Flood ConTrol System Plan - §257.82	21
7.1	Overview of 2016 Inflow Design Flood Control System Plan	21
7.2	Review of Initial IDF	21
7.3	Summary of Site Changes Affecting the Initial IDF	22
7.4	Periodic IDF	22

SECTION 8 Conclusions	25
SECTION 9 Certification Statement	
SECTION 10 References	27

LIST OF FIGURES

Figure 1	Site Location Map
Figure 2	Site Plan

LIST OF TABLES

- Table 1Periodic Certification Summary
- Table 22015 and 2020 Survey Comparison
- Table 3
 Factors of Safety from Periodic SFA
- Table 4Water Levels from Periodic IDF

LIST OF DRAWINGS

- Drawing 1 Initial to Periodic Survey Comparison Plan
- Drawing 2 Survey Comparison Isopach
- Drawing 3 Initial to Periodic Aerial Imagery Comparison

LIST OF ATTACHMENTS

PAP Piezometer Data Plots
PAP Site Visit Photolog
Periodic History of Construction Report Update Letter
Periodic Structural Stability and Safety Factor Assessment Analyses
Periodic Inflow Design Flood Control System Plan Analyses

EXECUTIVE SUMMARY

This Periodic United States Environmental Protection Agency (USEPA) Coal Combustion Residuals (CCR) Rule [1] certification report (Periodic Certification Report) for the Primary Ash Pond (PAP)² at the Newton Power Plant (NPP), also known as Newton Power Station, has been prepared in accordance with Rule 40, Code of Federal Regulations (CFR) §257, herein referred to as the "CCR Rule" [1]. The CCR Rule requires that initial certifications for existing CCR surface impoundment, completed in 2016 and subsequently posted on Illinois Power Generating Company (IPGC) CCR Website ([2], [3], [4], [5], [6]) be updated on a five-year basis.

The initial certification reports developed in 2016 and 2017 ([2], [3], [4], [5], [6]) were independently reviewed by Geosyntec. Additionally, field observations, interviews with power plant staff, updated engineering analyses, and evaluations were performed to compare conditions in 2021 at the PAP relative to the 2016 and 2017 initial certifications. These tasks identified that updates are not required for the Initial Hazard Potential Classification. However, due to changes at the site and technical review comments, updates were required and were performed for the:

- History of Construction Report,
- Initial Structural Stability Assessment,
- Initial Safety Factor Assessment, and
- Initial Inflow Design Flood Control System Plan.

Geosyntec's evaluations of the initial certification reports and updated analyses identified that the PAP meets all requirements for hazard potential classification, history of construction reporting, structural stability, safety factor assessment, and hydrologic and hydraulic control, with the exception of the structural integrity of hydraulic structures (§257.73(d)(1)(vi)), which was certified by others. **Table 1** provides a summary of the initial 2016 certifications and the updated 2021 periodic certifications.

² The PAP is also referred to as ID Number W0798070001-01, Primary Ash Pond by the Illinois Environmental Protection Agency (IEPA); CCR unit ID 401 by EEI; and IL50719 within the National Inventory of Dams (NID) maintained by the Illinois Department of Natural Resources (IDNR). Within this document it is referred to as the PAP.

Table 1 – Periodic Certification Summary

			2016 Initial Certification		2021 Periodic Certification	
	CCR Rule		Requirement		Requirement	
	Reference	Requirement Summary	Met?	Comments	Met?	Comments
Hazard	Potential Classification	n v				
3	§257.73(a)(2)	Document hazard potential	Yes	Impoundment was determined to	Yes	Updates were not determined to be
		classification		have Significant hazard potential		necessary. Geosyntec recommends
				classification [2].		retaining the Significant hazard
						potential classification.
History	of Construction					
4	§257.73(c)(1)	Compile a history of	Yes	History of Construction report was	Yes	A letter listing updates to the History
		construction		prepared for the PAP [3].		of Construction report is provided in
						Attachment C.
Structur	al Stability Assessmer	nt				
5	§257.73(d)(1)(i)	Stable foundations and	Yes	Foundations were found to be	Yes	Foundations and abutments were
		abutments		stable. Abutments are not present		found to be stable after performing
				[7].		updated slope stability analyses.
	§257.73(d)(1)(ii)	Adequate slope protection	Yes	Slope protection is adequate [7].	Yes	No changes were identified that may
						affect this requirement.
	§257.73(d)(1)(iii)	Sufficiency of embankment	Yes	Embankment compaction is	Yes	Dike compaction was found to be
		compaction		sufficient for expected ranges in		sufficient after performing updated
				loading conditions [7].		slope stability analyses.
	§257.73(d)(1)(iv)	Presence and condition of	Yes	Vegetation is present on interior	Yes	No changes were identified that may
		slope vegetation		and exterior slopes and is		affect this requirement.
				maintained. [7].		
	§257.73(d)(1)(v)(A)	Adequacy of spillway	Yes	Spillways are adequately designed	Yes	Spillways were found to be adequately
	and (B)	design and management		and constructed and adequately		designed and constructed and are
				manage flow during 1,000-year		expected to adequately manage flow
				flood [7].		during the 1,000-year flood, after
						performing updated hydrologic and
	8257 72(4)(1)(-::)	Star translints	V		Denie die eerstifie	nydraulic analyses.
	§257.75(d)(1)(V1)	Structural integrity of	res	through the orthonormant ware	independently a	anon of $\frac{237.73(0)(1)(v1)}{vas}$
		nydraune structures		inspected and found to maintain	independently c	ompleted by Lummant in 2020 [8].
				structural integrity [7]		
	8257 73(d)(1)(viii)	Stability of downstream	Vas	Downstream slopes adjacent to	Vac	Downstream slopes were found to be
	§237.73(u)(1)(vii)	slopes inundated by water	105	Newton Lake and the Secondary	105	stable after performing updated sudden
		body		Pond are expected to remain stable		drawdown slope stability analyses
		body.		during inundation [7]		drawdown slope stability analyses.
Safety F	actor Assessment					
6	8257.73(e)(1)(i)	Maximum storage pool	Yes	Safety factors were calculated to	Yes	Safety factors from updated slope
0	3=0///0(0)(1)(1)	safety factor must be at		be 1.66 and higher [5].	105	stability analyses were calculated to be
		least 1.50				1.66 and higher.
	\$257.73(e)(1)(ii)	Maximum surcharge pool	Yes	Safety factors were calculated to	Yes	Safety factors from updated slope
	0()/(/(/	safety factor must be at		be 1.66 and higher [5].		stability analyses were calculated to be
		least 1.40				1.66 and higher.
	§257.73(e)(1)(iii)	Seismic safety factor must	Yes	Safety factors were calculated to	Yes	Safety factors from updated slope
		be at least 1.00		be 1.07 and higher [5].		stability analyses were calculated to be
						1.07 and higher.
	§257.73(e)(1)(iv)	For embankment	Not	Embankment soils were not	Not	No changes were identified that may
		construction of soils that	Applicable	susceptible to liquefaction [5].	Applicable	affect this requirement.
		have susceptible to				
		liquefaction, safety factor				
		must be at least 1.20				
Inflow D	esign Flood Control S	ystem Plan		1	I	1
8	§257.82(a)(1), (2),	Adequacy of inflow design	Yes	Flood control system adequately	Yes	The flood control system was found to
	(3)	control system plan.		managed inflow and peak		adequately manage inflow and peak
				discharge during the 1,000-year,		discharge during the 1,000-year, 24-
				24-hour, Inflow Design Flood [7].		hour, Inflow Design Flood, after
						performing updated hydrologic and
	8257 00 7 1	D: 1 0 777				hydraulic analyses.
	§257.82(b)	Discharge from CCR Unit	Yes	Discharge from the CCR Unit is	Yes	Discharge from the CCR Unit is routed
				routed through a NPDES-		through a NPDES-permitted outfall
				permitted outfall during both nor-		during both normal and 1,000-year, 24-
				flow Design Flood and different [2]		nour mnow Design Flood conditions,
				now Design Flood conditions [6].		anter performing updated hydrologic
	l	1				and nyuraune analyses.

 $GLP8027 \ NEW_PAP_Full_2021_Cert_Report_20211011$

INTRODUCTION AND BACKGROUND

This Periodic United States Environmental Protection Agency (USEPA) Coal Combustion Residual (CCR) Rule [1] Certification Report was prepared by Geosyntec Consultants (Geosyntec) for Illinois Power Generating Company (IPGC) to document the periodic certification of the Primary Ash Pond (PAP) at the Newton Power Plant (NPP), also known as the Newton Power Station, located at 6725 N 500th Street, Newton, Illinois, 62448. The location of NPP is provided in **Figure 1**, and a site plan showing the location of the PAP and landfill, among other closed and open CCR units and non-CCR surface impoundments, is provided in **Figure 2**.

Figure 1 – Site Location Map (from AECOM, 2016)

Figure 2 – Site Plan

1.1 <u>PAP Description</u>

The PAP is utilized for managing CCR materials generated by NPP. The PAP has a Significant hazard potential, based on the initial hazard potential classification assessment performed by Stantec in 2016 in accordance with \$257.73(a)(2) [2].

The PAP receives fly ash, bottom ash, and other miscellaneous non-CCR process waters produced by NPP. Bottom ash is sluiced from the north perimeter of the PAP on either side of the Secondary Settlement Pond, which is a non-CCR basin included within the footprint of the Primary Ash Pond. The outfall structure in the PAP discharges through the perimeter embankment into the Secondary Pond, which is a non-CCR basin that ultimately discharges into Newton Lake via a National Pollutant Discharge Elimination System (NPDES)-permitted outfall. Two adjacent spillway structures are present at the PAP: the principal spillway structure and the secondary spillway structure. Only the principal structure is used to control outflow during both normal operational and flood conditions. The spillway structures are both identical square concrete riser structures, with inflow controlled by a series of stoplogs. Inflow into the structures is transmitted to the Secondary Pond through 30-inch diameter corrugated metal pipes that have been slip lined and now have an inside diameter of 28 inches. The principal spillway structure is located at a lower elevation than the secondary spillway structure, with a top of weir box elevation of 537 feet and a pipe invert elevation of 512.5 feet (presumed to be NGVD29 datum based on the date of the design drawings). The secondary spillway structure is located directly upslope from the primary structure and has a top of weir box elevation of 555 feet, which is the design crest elevation of the earthen embankment, and a pipe invert elevation of 533 feet. The 28-inch diameter slip lined outlet pipes from both structures converge within the earthen embankment into a single 28-inch slip lined outlet pipe that discharges into the Secondary Pond. The purpose of the secondary spillway structure is to be a supplemental spillway for the Primary Ash Pond under conditions where the pool level is significantly increased above the current normal pool to allow for additional storage volume [7].

The surface area of the impoundment is approximately 400 acres, and the embankment is a continuous structure (a ring embankment), which has a total perimeter length of approximately 3.2 miles and a maximum height above the exterior grade of 72 feet where the downstream toe of the embankment is underneath the normal pool level of the downstream Newton Lake. Typical embankment heights range from 14 to 42 feet. The embankment was constructed as a homogenous earthen structure with well-compacted clayey fill. Portions of the south embankment directly adjacent to Newton Lake include crushed stone near the waterline for erosion protection. The upstream and downstream slope orientations are typically 3H:1V (horizontal to vertical) but range from about 2.5H:1V to 3.4H:1V. Embankment crest widths range from approximately 12 to 50 feet, and the crest is covered with a gravel access road [7].

The pool elevation of the pond is controlled by the configuration of the outflow structure and plant process inflows. At the time of the periodic survey, was approximately³ 535.5 feet. Crest elevations range from approximately 553 to 555 feet, and the minimum crest elevation is 552.7 feet [7].

Initial certifications for the PAP for Hazard Potential Classification (§257.73(a)(2)), History of Construction (§257.73(c)), Structural Stability Assessment (§257.73(d)), Safety Factor Assessment (§257.73(e)(1)), and Inflow Design Flood Control System Plan (§257.82) were completed by Stantec and AECOM in 2016 and 2017 and subsequently posted to IPGC's CCR Website ([2], [3], [4], [5], [6]).

³ All elevations are in the North American Vertical Datum of 1988 (NAVD88), unless otherwise noted.

1.2 <u>Report Objectives</u>

These following objectives are associated with this report:

- Compare site conditions from 2015/2016 to site conditions in 2020/2021, and evaluate if updates are required to the:
 - §257.73(a)(2) Hazard Potential Classification [2];
 - §257.73(c) History of Construction [3];
 - §257.73(d) Structural Stability Assessment [4];
 - §257.73(e) Safety Factor Assessment [5], and/or
 - §257.82 Inflow Design Flood Control System Plan [6].
- Independently review the Hazard Potential Classification ([2], [9]), Structural Stability Assessment ([4], [7]), Safety Factor Assessment ([5], [7]), and Inflow Design Flood Control System Plan ([6], [7]) reports to determine if updates may be required based on technical considerations.
 - The History of Construction report [3] was not independently reviewed for technical considerations, as this report contained historical information primarily developed prior to promulgation of the CCR Rule [1] for the CCR units at NPP, and did not include calculations or other information used to certify performance and/or integrity of the impoundments under §257.73(a)(2)-(3), §257.73(c)-(e), or §257.82.
- If updates are required, they will be performed and documented within this report.
- Confirm that the PAP meets all of the requirements associated with §257.73(a)(2), (c), (d), (e), and §257.82, or, if the PAP does not meet all requirements, provide recommendations for compliance with these sections of the CCR Rule [1].

COMPARISON OF 2015/16 AND 2020/21 SITE CONDITIONS

2.1 <u>Overview</u>

This section describes the comparison of conditions at the PAP between the start of the initial CCR certification program in 2015 and subsequent collection of periodic certification site data in 2020 and 2021.

2.2 <u>Review of Annual Inspection Reports</u>

Annual onsite inspections for the PAP were performed between 2016 and 2020 ([10], [11], [12], [13], [14] and, [15]) and were certified by a licensed professional engineer in accordance with §257.83(b). Each inspection report stated the following information, relative to the previous inspection:

- A statement that no changes in geometry of the impounding structure were observed since the previous inspection.
- Information on maximum recorded instrumentation readings and water levels.
- Approximate volumes of impounded water and CCR at the time of inspection.
- A statement that no appearances of actual or potential structural weakness or other disruptive conditions were observed.
- A statement that no other changes which may have affected the stability or operation of the impounding structure were observed.

In summary, the reports did not indicate any significant changes to the PAP between 2015 and 2020.

2.3 <u>Review of Instrumentation Data</u>

Twelve piezometers are present at the PAP and were monitored monthly between August 5, 2015 and April 29, 2021 [16]. Geosyntec reviewed the piezometer data to evaluate if significant fluctuations, partially increases in phreatic levels, may have occurred between development of the initial structural stability and factor of safety certifications [7], [4], [5]) and April 29, 2021. Available piezometer readings are plotted in **Attachment A**.

In summary, the peak measured groundwater levels for several piezometers were up to 10 ft higher than the phreatic conditions considered during the initial certification. These changes could impact the results of the factor of safety analyses required for the structural stability and factor of safety certifications ([7], [4], [5]). Specifically, up to four cross sections were identified with significant changes in phreatic conditions.

2.4 <u>Comparison of 2015 to 2020 Surveys</u>

Surveys conducted at the site by Weaver Consultants (Weaver) in 2015 [17] and IngenAE, LLC (IngenAE) in 2020 [18] were compared within AutoCAD Civil3D 2021 software. This comparison quantified changes in the volume of CCR placed within the PAP and considered volumetric changes above and below the starting water surface elevation (SWSE) used for the 2016 §257.82 inflow design flood control plan hydraulic analysis [7]. Potential changes to embankment geometry were also evaluated. This comparison is presented in side-by-side views of each survey in **Drawing 1**, and a plan view isopach map denoting changes in ground surface elevation in **Drawing 2**. A summary of the water elevations and changes in CCR volumes is provided in **Table 2**.

Initial Surveyed Pool Elevation (ft)	534.0
Periodic Surveyed Pool Elevation (ft)	535.5
Initial §257.82 Starting Water Surface Elevation (SWSE) (ft)	534.0
Total Change in CCR Volume (CY)	98,711 (fill)
Change in CCR Volume Above SWSE (CY)	185,376 (fill)
Change in CCR Volume Below SWSE (CY)	-86,913 (cut)

Table 2 – 2015 and 2020 Survey Comparison

The comparison indicated that approximately 98,711 CY of CCR was placed in the PAP between the initial and periodic survey, thereby leading to a potential for the peak water surface elevation (PWSE) to increase during the inflow design 1,000-year flood event. Also, the measured water surface elevation for the periodic survey is higher than the water levels estimated for both normal and a 1,000-yr flood events event in the initial certifications (**Section 7**).

No significant changes to embankment geometry appeared to have occurred between the initial and periodic surveys, as shown on the isopach. However, along the northern embankments there appears to be material stockpiled upstream of the embankments which would have increased the loading on the embankments. It is further noted that there are two areas along the southern embankment that appear to be cut and apparently excavated since the initial survey. Such excavation is not known to have occurred and it is likely this apparent cut is a byproduct of survey discrepancy between the initial and periodic bathymetric surveys.

2.5 <u>Comparison of 2015 to 2020 Aerial Photography</u>

Aerial photographs of the PAP collected by Weaver in 2015 [17] and IngenAE in 2020 [18] were compared to visually evaluate if potential site changes (i.e., changes to the embankment, outlet structures, limits of CCR, other appurtenances) may have occurred. A comparison of these aerial photographs is provided in **Drawing 3**, and the following changes were identified:

- A few mounds of new earth built up along the northern embankments; and
- No clear change in the ash delta or shoreline was observed; and
- It appears the water level of the impounded pond may have been higher in 2015.

2.6 <u>Comparison of Initial and Periodic Site Visits</u>

An initial site visit to the PAP was conducted by AECOM in 2015 and documented with a Site Visit Summary and corresponding photographs [19]. A site visit was conducted by Geosyntec on May 21, 2021, with Panos Andonyadis, P.E., conducting the site visit. The site visit was intended to evaluate potential changes at the site since 2015 (i.e., modification to the embankment, outlet structures or other appurtenances, limits of CCR, maintenance programs, repairs), in addition to performing visual observations of the PAP to evaluate if the structural stability requirements (§257.73(d)) were still met. The site visit included walking the perimeter of the PAP, visually observing conditions, recording filed notes, and collecting photographs. The site visit is documented in a photographic log provided in **Attachment B**. A summary of significant findings from the periodic site visit is provided below:

- The perimeter embankments appear to be structurally stable as no signs of structural or foundation instability were observed
- No new development was observed in the vicinity of the PAP, although the observation was limited to the portions of the vicinity visible form the crest of the PAP dike.
- No significant changes were observed since the previous certification.

2.7 Interview with Power Plant Staff

An interview with Ken Schafer of the NPP was conducted by Panos Andonyadis of Geosyntec on May 21, 2021. Mr. Schafer was employed at NPP between 2015 and 2021, The interview included a discussion of potential changes that that may have occurred at the PAP since development of the initial certifications ([2], [3], [4], [5], [6], [7]) in 2015 and 2016. between 2015 and 2020. A summary of the interview is provided below.

• Were any construction projects completed for the PAP between 2015 and 2021, and, if so, are design drawings and/or details available?

- No repairs were performed since the initial certification.
- Were there any changes to the purpose of the PAP between 2015 and 2021?
 - No, the impoundment continues to receive sluiced ash, sluiced bottom ash, and plant waste water.
- Were there any changes to the to the instrumentation program and/or physical instruments for the PAP between 2015 and 2021?
 - o No.
- Are area-capacity curves for the PAP available?
 - No area-capacity curves have been developed.
- Were there any changes to spillways and/or diversion features for the PAP completed between 2015 and 2021?
 - No changes to the spillway were made.
- Were there any changes to construction specifications, surveillance, maintenance, and repair procedures for the PAP between 2015 and 2021?
 - No changes were made.
- Were there any instances of embankment and/or structural instability for the PAP between 2015 and 2021?
 - A repair of a slough was performed on the upstream side of the southernmost embankment. The damage appears to have been caused by wave related erosion and is limited to the area of a previous repair.

HAZARD POTENTIAL CLASSIFICATION - §257.73(a)(2)

3.1 <u>Overview of 2016 Initial Hazard Potential Classification</u>

The Initial Hazard Potential Classification (Initial HPC) was prepared by Stantec Consulting Services, Inc. (Stantec) in 2016 ([2], [9]), following the requirements of §257.73(a)(2). The Initial HPC included the following information:

- Performing a visual analysis to evaluate potential hazards associated with a failure of the PAP perimeter embankment, along all sides of the PAP.
- Evaluation of potential breach flow paths were evaluated using elevation data and aerial imagery to evaluate potential impacts to downstream structures, infrastructure, frequently occupied facilities/areas, and waterways [2].
- While a breach map is not included in the Initial HPC, it is included within the \$257.73(a)(3) Initial Emergency Action Plan prepared by Stantec [20].

The visual analysis indicated that none of the breach scenarios appeared to impact occupied structures, although a breach of the east embankment could impact an infrequently-used gravel site access road and a breach of the north, northeast or east embankment could impact a nearby railroad. The Initial HPC concluded that none of breach scenarios considered would be likely to result in a probable loss of human life, although the breach could cause CCR to be released into the Newton Lake, thereby causing environmental damage. The Initial HPC therefore recommended a "Significant" hazard potential classification for the PAP [2].

3.2 <u>Review of Initial HPC</u>

Geosyntec performed a review of the Initial HPC ([2], [9]) in terms of technical approach, input parameters, assessment of the results, and applicable requirements of the CCR Rule [1]. No significant technical issues were noted within the technical review, although a detailed review (e.g., check) of the calculations was not performed.

3.3 <u>Summary of Site Changes Affecting the Initial HPC</u>

Geosyntec did not identify any changes at the site that may affect the HPC. No new structures, infrastructure, frequently occupied facilities/areas, or waterways were present in the probable breach area indicated in the Initial EmAP [20], although Geosyntec's evaluation of new structures was limited to visual observations completed from the dike crest during the site visit and a review of available aerial imagery provided by IngenAE in 2020 [18]. Additionally, no significant changes to the topography in the probable breach were identified.

3.4 <u>Periodic HPC</u>

Geosyntec recommends retaining the "Significant" hazard potential classification for the PAP, per §257.73(A)(2), based on the lack of site changes potentially affecting the Initial HPC occurring since the initial HPC was developed, as described in **Section 3.2**. Updates to the Initial HPC reports ([2], [9]) are not recommended at this time.

- Conicon

HISTORY OF CONSTRUCTION REPORT - §257.73(c)

4.1 <u>Overview of Initial HoC</u>

The Initial History of Construction report (Initial HoC) was prepared by AECOM in 2016 [3], following the requirements of §257.73(c), and included information on the PAP. The Initial HoC included the following information for each CCR surface impoundment:

- The name and address of the owner/operator,
- Location maps,
- Statements of purpose,
- The names and size of the surrounding watershed,
- A description of the foundation and abutment materials,
- A description of the embankment materials,
- Approximate dates and stages of construction,
- A list of available design and engineering drawings,
- A summary of instrumentation,
- A statement that area-capacity curves are not available,
- Information on spillway structures,
- A statement that the constructions specifications are not available,
- Inspection and surveillance plans,
- Information on operational and maintenance procedures, and
- A statement of observed historical structural instability that occurred at the PAP.

4.2 <u>Summary of Site Affecting the Initial HoC</u>

Several significant changes were identified at the site that occurred after development of the initial HoC report [3] and are described below:

- A state identification number (ID) of W0798070001-01 was assigned to the PAP by the Illinois Environmental Protection Agency (IEPA).
- Revised area-capacity curves and spillway design calculations for the PAP were prepared as part of the updated periodic Inflow Design Flood Control System Plan, as described in **Section 7.3**.

A letter documenting changes to the HoC report is provided in Attachment C.

STRUCTURAL STABILITY ASSESSMENT - §257.73(d)

5.1 Overview of Initial SSA

The Initial Structural Stability Assessment (Initial SSA) was prepared by AECOM in 2016 ([4], [7]) following the requirements of §257.73(d)(1), and included the following evaluations:

- Stability of embankment foundations, embankment abutments, slope protection, embankment compaction, and slope vegetation,
- Spillway stability including capacity, structural stability and integrity;
- Stability and structural integrity of hydraulic structures; and
- Downstream slope stability under sudden drawdown conditions for a downstream water body.

A periodic certification of the structural stability and structural integrity of hydraulic outfall structures (\$257.73(d)(1)(vi)) was performed by Luminant in 2020 [8]. This certification independently determined that the criteria was met due to the condition of the spillway pipes and the soil types within the embankment. Therefore, the review and certification of \$257.73(d)(1)(vi) was not included within the scope of this report.

The Initial SSA referenced the results of the Initial Structural Factor Assessment (Initial SFA) ([5], [7]), to demonstrate stability of the stability of foundations and abutments (\$257.73(d)(1)(i)) and sufficiency of dike compaction (\$257.73(d)(1)(iii)) portions of the SSA criteria. This included stating that slope stability analyses for slip surfaces passing through the foundation met or exceeded the criteria listed in \$257.73(e)(1), for the stability of foundations and abutments. For the sufficiency of dike compaction, this included stating that slope stability analyses for slip surfaces passing through the dike also met or exceeded the \$257.73(e)(1) criteria.

Additionally, the Initial SSA included a sudden drawdown slope stability analysis to evaluate the effect of a drawdown event in the adjacent Newton Lake from the 100-year flood pool to an empty-pool condition, as required by §257.73(3)(1)(vii) for CCR units where the downstream slopes are inundated by an adjacent water body. The minimum acceptable factor of safety for this loading condition was assumed to be 1.3 based on US Army Corps of Engineers guidance [21].

5.2 <u>Review of Initial SSA</u>

Geosyntec performed a review of the Initial SSA ([4], [7]) in terms of technical approach, calculation input parameters and methodology, recommendations, and completeness. The review included the following tasks:

- Reviewing photographs collected in 2015 and used to demonstrate compliance with \$257.73(d)(1)(i)-(vii).
- Reviewing geotechnical calculations used to demonstrate the stability of foundations, per §257.73(d)(1)(i), sufficiency of embankment compaction, per §257.73(d)(1)(iii), and downstream slope inundation/stability, per §257.73(d)(1)(vii), in terms of supporting geotechnical investigation and testing data, input parameters, analysis methodology, selection of critical cross-sections, and loading conditions.
- Reviewing completeness and technical approach of closed-circuit television (CCTV) inspections used to evaluate the stability of hydraulic structures, per §257.73(d)(1)(vi).

No significant technical issues were noted within the technical review, although a detailed review (e.g., check) of the calculations was not performed.

5.3 <u>Summary of Site Changes Affecting the Initial SSA</u>

Several changes at the site that occurred after development of the Initial SSA were identified. These changes required updates to the Initial SSA and are described below:

- The Initial SSA utilized the results of the Initial Inflow Design Flood Control System Plan (IDF) to demonstrate compliance with the adequacy of spillway design and management (§257.73(d)(1)(v)(A)-(B)). The Initial IDF was subsequently updated to develop a Periodic IDF, based on site changes, as discussed in **Section 7**.
- The Initial SSA utilized the slope stability analysis results of the Initial Safety Factor Assessment (SFA) as part of the compliance demonstration for the stability of foundations and abutments (§257.73(d)(1)(i)) and sufficiency of dike compaction (§257.73(d)(1)(iii)) as discussed in **Section 5.1**. The Initial SSA also utilized sudden drawdown slope stability analyses performed using the same cross-sections and input data as the Initial SFA to demonstrate compliance with downstream slope inundation/stability (§257.73(d)(1)(vii). The Initial SFA slope stability analyses, including the sudden drawdown analyses, were subsequently updated to develop a Periodic SFA, based on site changes, as discussed in **Section 6.4**.

5.4 <u>Periodic SSA</u>

The Periodic SFA (**Section 6.4**) indicates that foundations and abutments are stable and dike compaction is sufficient for expected ranges in loading conditions, as slope stability factors of safety were found to meet or exceed the requirements of \$257.73(e)(1), including for static maximums storage pool conditions and post-earthquake (i.e., liquefaction) loading conditions considering seismically-induced strength loss in the foundation soils. Therefore, the requirements of \$257.73(d)(1)(i) and \$257.73(d)(1)(iii) are met for the Periodic SSA.

The Periodic IDF (**Section 7.4**) indicates that spillways are adequately designed and constructed to adequately manage flow during the PMF flood, as the spillways can adequately manage flow during peak discharge from the PMP storm event without overtopping of the embankments. Therefore, the requirements of 257.73(d)(1)(v)(A)-(B) are met for the Periodic SSA.

Certification of §257.73(d)(1)(vi) was independently performed by Luminant [8] and is not included within the scope of this report.

SAFETY FACTOR ASSESSMENT - §257.73(e)(1)

6.1 Overview of Initial SFA

The Initial Safety Factor Assessment (Initial SFA) was prepared by AECOM in 2016 [7], following the requirements of \$257.73(e)(1). The Initial SFA included the following information:

- A geotechnical investigation program with in-situ and laboratory testing;
- An assessment of the potential for liquefaction in the embankment and foundation soils;
- The development of ten slope stability cross-sections for limit equilibrium stability analysis utilizing GeoStudio SLOPE/W software; and
- The analysis of all cross-sections for maximum storage pool, maximum surcharge pool, and seismic loading conditions.

The Initial SFA concluded that the PAP met all safety factor requirements, per §257.73(e), as all calculated safety factors were equal to or higher than the minimum required values.

6.2 <u>Review of Initial SFA</u>

Geosyntec performed a review of the Initial SFA ([5], [7]) in terms of technical approach, calculation input parameters and methodology, recommendations, and completeness. The review included the following tasks:

- Reviewing geotechnical calculations used to demonstrate the acceptable safety factors, per §257.73(e)(1), in terms of:
 - Completeness and adequacy of supporting geotechnical investigation and testing data;
 - Completeness and approach of liquefaction triggering assessments;
 - Input parameters, analysis methodology, selection of critical cross-sections, and loading conditions utilized for slope stability analyses; and
 - Phreatic conditions based on piezometric data, as discussed in Section 2.3.

No significant technical issues were noted within the technical review, although a detailed review (e.g., check) of the calculations was not performed.

6.3 <u>Summary of Site Changes Affecting the Initial SFA</u>

Several changes at the site that occurred after development of the Initial SFA were identified. These changes required updates to the Initial SFA and are described below:

- The groundwater levels measured since 2015 (Section 2.3) appear to be up to 10 ft higher than the phreatic surface modeled for the perimeter embankments during the Initial SFA ([5], [7]). Therefore, the phreatic surface needed to be updated to reflect the critical levels observed since 2015.
- The Periodic IDF (Section 7.4) found that the normal pool elevation within the PAP increased from 534.0 to 537.0 ft, resulting in 3.0 ft more water loading on the embankment dikes than was considered in the Initial SFA for the maximum storage pool, seismic loading conditions (§257.73(e)(1)(i) and (iii)), and sudden drawdown loading condition (§257.73(d)(1)(ii)). Peak water surface elevations during the IDF also increased from 534.9 to 538.2 ft, resulting in 3.3 ft more water loading on the embankment dikes than was considered in the Initial SFA for the maximum surcharge pool loading conditions (§257.73(e)(1)(i)).

6.4 <u>Periodic SFA</u>

Geosyntec revised existing slope stability analyses associated with the Initial SFA ([5], [7]) for the ten cross- sections of PAP to account for the increase in normal and peak pool loadings, and phreatic level changes as described in **Section 2.3** and **Section 7.4**. This included revising the slope stability analyses evaluating sudden drawdown conditions in the cross-sections adjacent to the downstream water body that were utilized as part of the Initial SSA (**Section 6.2**). The following approach and input data were used to revise the analyses:

- Water levels in the PAP for the maximum storage pool, seismic slope stability analysis, and sudden drawdown loading conditions were increased to El. 537.0 ft, based on the Periodic IDF (Section 7.4).
- Water levels in the PAP for the maximum surcharge pool slope stability analysis loading conditions were increased to El. 538.2 ft, based on the Periodic IDF (Section 7.4).
- According to updated groundwater level monitoring plot (Section 2.3), the phreatic level in the location of related piezometers increased for all the loading conditions from El. 534 to El. 538 ft in cross-section "E", from El. 537 to El. 539 ft in cross-section "F", from El. 535 to El. 544 ft in cross-section "G", and from El. 535 to El. 541 ft in cross-section "K".
- All other analysis input data and settings from the Initial SFA ([5], [7]), were utilized, including, but not limited to, subsurface stratigraphy and soil strengths, phreatic conditions,

ground surface geometry, software package and version, slip surface search routines and methods, and input data for the seismic analyses.

Factors of safety from the Periodic SFA are summarized in **Table 3** and confirm that the PAP meets the requirements of §257.73(e)(1). Slope stability analysis output associated with the Initial SFA is provided in **Attachment D**.

	Struc	Structural Stability Assessment (§257.73(d))			
Cross- Section	Maximum Storage Pool §257.73(e)(1)(i) Minimum Required = 1.50	Maximum Surcharge Pool ¹ §257.73(e)(1)(ii) Minimum Required = 1.40	Seismic §257.73(e)(1)(iii) Minimum Required = 1.00	Dike Liquefaction §257.73(e)(1)(iv) Minimum Required = 1.20	Sudden Drawdown §257.73(d)(1)(ii) Minimum Required = 1.30
А	1.82	1.82	1.26	N/A	N/A
В	1.81	1.81	1.07*	N/A	1.59*
С	1.67	1.67	1.11	N/A	1.67
D	1.76	1.76	1.23	N/A	1.76
Е	2.18	2.18	1.91	N/A	N/A
F	1.93	1.93	1.45	N/A	N/A
G	1.98	1.98	1.46	N/A	N/A
Н	1.81	1.81	1.36	N/A	N/A
Ι	1.66*	1.66*	1.43	N/A	1.61
K	1.73	1.74	1.17	N/A	1.73

Tabla 3 _	Factors	of Safety	from	Pariodic	SEA
Table 5 –	ractors	of Safety	пош	Periodic	ЭГА

Notes:

*Indicates critical cross-section (i.e., lowest calculated factor of safety out of the ten cross-sections analyzed)

N/A – Loading condition is not applicable.

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN - §257.82

7.1 Overview of 2016 Inflow Design Flood Control System Plan

The Initial Inflow Design Flood Control System Plan (Initial IDF) was prepared by AECOM in 2016 [7], following the requirements of §257.82. The Initial IDF included the following information:

- A hydraulic and hydrologic analysis, performed for the 1,000-year design flood event because of the hazard potential classification of "Significant", which corresponded to 9.01 inches of rainfall over a 24-hour period.
- The Initial IDF utilized a HydroCAD Version 10 model to evaluate spillway flows and pool level increases during the design flood, with a starting water surface elevation of 534.0 ft.

The Initial IDF concluded that the PAP met the requirements of §257.82, as the peak water surface estimated by the HydroCAD model was elevation 534.9 ft, relative to a minimum PAP embankment crest elevation of 552.7 ft. Therefore, overtopping was not expected. The Initial IDF also evaluated the potential for discharge from the CCR unit and determined that discharge from the PAP during normal and inflow design flood conditions was expected to be routed through the existing spillway and NPDES-permitted outfall.

7.2 <u>Review of Initial IDF</u>

Geosyntec performed a review of the Initial IDF ([6], [7]) in terms of technical approach, calculation input parameters and methodology, recommendations, and completeness. The review included the following tasks:

- Reviewing the return interval used vs. the hazard potential classification.
- Reviewing the rainfall depth and distribution for appropriateness.
- Performing a high-level review of the inputs to the hydrological modeling.
- Reviewing the hydrologic model parameters for spillway parameters, starting pool elevation, and storage vs. the reference data.
- Reviewing the overall Initial IDF vs. the applicable requirements of the CCR Rule

Several review comments were identified during review of the Initial IDF. The comments are described below:

- The Initial IDF utilized the National Resource Conservation Service (NRCS) Type II rainfall distribution type [22]. Geosyntec recommend utilizing the Huff 3rd Quartile distribution for areas less than 10 square miles [23] for the reasons listed below.
 - Huff 3rd Quartile distribution was determined to be a more appropriate representation of a 1,000-year, 24-hour storm event per the Illinois State Water Survey (ISWS) Circular 173 [24] which developed standardized rainfall distributions from compiled rainfall data at sites throughout Illinois.
 - Illinois Department of Natural Resources, Office of Water Resources (IDNR-OWR) [25] recommends use of the Huff Quartile distributions in Circular 173 when using frequency events to determine the spillway design flood inflow hydrograph, "The suggested method to distribute this rainfall is described in the ISWS publication, Circular 173, "Time Distributions of Heavy Rainstorms in Illinois".
- The process inflows (ash sluice and wastewater) included within the hydrologic and hydraulic analysis file were daily averages which are less than the maximum pump rate (i.e., worst-case scenario).

7.3 <u>Summary of Site Changes Affecting the Initial IDF</u>

Two changes at the site that occurred after development of the Initial IDF were identified. These changes required updates to the Initial IDF and are described below:

- Approximately 98,700 CY of CRR were placed above the SWSE utilized for the Initial IDF certification, thereby altering the stage-storage curve for the PAP relative to the Initial IDF.
- The operative water level of the impoundment is higher, thereby altering the SWSE for the PAP relative to the Initial IDF.

7.4 <u>Periodic IDF</u>

Geosyntec revised the HydroCAD model associated with the Initial IDF to account for the revised rainfall distribution type, cessation of process flows, and additional CCR placement, as described in **Sections 7.2** and **7.3**. The following approach and input data were used for the revised analyses and are referenced in **Attachment E** as appropriate:

• Stage-storage (i.e., area-capacity) curves for the PAP were updated based on the 2020 site survey [18].

- A revised stage-volume curves for the PAP and Secondary Pond were prepared based on measuring the storage volume of the ponds at every one-foot increment of depth from an elevation at the bottom of the ponds (495 ft PAP; 505 ft Secondary Pond) to the perimeter dike embankment's approximate minimum crest elevation (552 ft PAP; 532 ft Secondary Pond). This analysis identified an overall increase of 129,070 CY (80 ac-ft) of storage volume at the PAP and an overall decrease of 14,520 CY (9 ac-ft) of storage volume at the Secondary Pond from 2016 to 2021.
- The SWSE within the PAP was updated from 534.0 ft to 537.0 ft as this is the invert of the pond outlet structure. The 2020 site survey showed a water surface elevation (WSE) of 535.5 ft; however, the greater elevation of the outlet invert and the surveyed WSE was used as the SWSE to provide conservatism in the model.
- The SWSE within the Secondary Pond was updated from 520.0 ft to 519.9 ft to reflect the 2020 site survey. The primary outlet invert elevation from the Secondary Pond is 505 ft; however, the greater elevation of the outlet invert and the surveyed WSE was used as the SWSE to provide conservatism in the model.
- Updated the inflows from the Ash Sluice from 3.88 cfs for 14 hours per day to 13.37 cfs for 14 hours per day for the duration of the modeled simulation. This more accurately reflects the full load operation of the pumps described in the Initial Full Certification Report (two pumps at 3,000 gpm each, operating 14 hours/day under full load).
- Wastewater inflows were updated from 11.64 cfs for 24 hours per day to 23.39 cfs for 12 hours per day for the duration of the modeled simulation. This more accurately reflects the full load operation of the pumps described in the Initial Full Certification Report (five pumps at 2,100 gpm each, operating 60 pump hours/day).
- The time of concentration (ToC) was updated for drainage areas to the PAP and Secondary Pond from 16.7 minutes (PAP) and 5 minutes (Secondary Pond) to 6 minutes to reflect direct run-on inflow in accordance with TR-20 [22].
- The primary outlet structure from the PAP was updated to reflect the description in the Initial Full Certification Report with no noted changes to the outlet structures.
 - The outlet invert elevation was updated from 512.0 ft to 512.18 ft to reflect the described invert elevation of 512.5 ft using the NGVD29 datum. This was converted to the NAVD88 datum to be consistent with the vertical datum used for the IDF HydroCAD model.
 - Added a weir box riser structure by routing a 28-inch diameter horizontal orifice to the existing outlet culvert. The invert of the riser was set to 537.0 ft. The dimensions of the riser structure were not available; therefore, the riser structure was sized in the model to be consistent with the downstream culvert; this was assumed to be a conservatively restrictive outlet.

- The routing method for the model was updated to more accurately account for routing between the ponds and Lake Newton. The Reach Routing Method was updated from "Storage Indication+ Translation" to "Dynamic Storage Indication". The Pond Routing Method was updated from "Storage Indication" to "Dynamic Storage Indication".
- The tailwater conditions of the PAP and Secondary Pond were changed from fixed elevations to "Automated" to more accurately account for routing between the ponds.
- Lake Newton was changed to be represented by a link instead of a pond, which allowed a fixed water surface of 504.33 ft (based on 2020 survey of outlet invert elevation).
- The outlet invert elevation of the culvert outlet from the Secondary Pond was updated to 504.33 ft to reflect the 2020 site survey.
- All other input data and settings from the Initial IDF HydroCAD model were utilized, including, but not limited to software package and version, runoff method, rainfall depth, analysis time span and analysis time step.

The results of the Updated IDF are summarized in **Table 4** and confirm that the PAP meets the requirements of §257.82(a)-(b), as the peak water surface elevation does not exceed the minimum perimeter dike crest elevations. Additionally, all discharge from the PAP is routed through the existing spillway system to the NPDES-permitted outfall, during both normal and IDF conditions. Updated area-capacity curves and HydroCAD model output is provided in **Attachment E**.

	Primary Ash Pond				
	Starting Water Surface Peak Water Surface Minimum Dike Crest				
Analysis	Elevation (ft)	Elevation (ft)	Elevation (ft)		
Initial IDF	534.0	534.9	552.0		
Updated Periodic IDF	537.0	538.2	552.0		
Initial to Periodic Change ¹	+3.0	+3.3			

Table 4- Water Levels from Periodic IDF

Notes:

¹Postive change indicates increase in the WSE relative to the Initial IDF, negative change indicates decrease in the WSE, relative to the Initial IDF.

CONCLUSIONS

The PAP at NPP was evaluated relative to the USEPA CCR Rule periodic assessment requirements for:

- Hazard potential classification (§257.73(a)(2)),
- History of Construction reporting (§257.73(d)),
- Structural stability assessment (§257.73(d)), with the exception of §257.73(d)(1)(vi) that was independently certified by Luminant [8];
- Safety factor assessment (§257.73(e)), and
- Inflow design flood control system planning (§257.82).

Based on the evaluations presented herein, the referenced requirements are satisfied.

CERTIFICATION STATEMENT

CCR Unit: Illinois Power Generating Company, Newton Power Plant, Primary Ash Pond

I, Panos Andonyadis, being a Registered Professional Engineer in good standing in the State of Illinois, do hereby certify, to the best of my knowledge, information, and belief that the information contained in this 2021 USEPA CCR Rule Periodic Certification Report, has been prepared in accordance with the accepted practice of engineering. I certify, for the above-referenced CCR Unit, that the periodic assessment of the hazard potential classification, history of construction report, structural stability, safety factors, and inflow design flood control system planning, dated October 2021, were conducted in accordance with the requirements of 40 CFR §257.73(a)(2), (c), (d), (e), and §257.82, with the exception of §257.73(d)(1)(vi)) that was independently certified by others.

MINIMUM III annun muntum ANDON 062-066885 LICENSED Panos Andonyadis ROFESSION OCTOBER 11, 2021 Date

REFERENCES

- [1] United States Environmental Protection Agency, 40 CFR Parts 257 and 261; Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule, 2015.
- [2] Stantec Consulting Services Inc., "Initial Hazard Potetnial Classification Assessment, EPA Final CCR Rule, Primary Ash Pond, Newton Power Station, Jasper County, Illinois," Fenton, MO, October 12, 2016.
- [3] AECOM, "History of Construction, USEPA Final CCR Rule, Newton Power Station, Newton, Illinois," October 2016.
- [4] AECOM, "CCR Rule Report: Initial Structural Stability Assessment For Primary Ash Pond At Newton Power Station," St. Louis, MO, October 2016.
- [5] AECOM, "CCR Rule Report: Initial Safety Factor Assessment For Primary Ash Pond At Newton Power Station," St. Louis, MO, October 2016.
- [6] AECOM, "CCR Rule Report: Initial Inflow Design Flood Control System Plan For Primary Ash Pond At Newton Power Station," St. Louis, MO, October 2016.
- [7] AECOM, "CCR Certification Report: Initial Structural Stability Assessment, Initial Safety Factor Assessment, and Initial Inflow Design Flood Control System Plan for Primary Ash Pond at Newton Power Station," St. Louis, MO, October 2016.
- [8] V. Modeer, "Primary Ash Pond Structural Stability Assessment, Illinois Power Resrouces Generationg, LLC, Newton Power Station," Luminant, October 1, 2020.
- [9] Stantec Consulting Services, Inc., "Documentation of Initial Hazard Potential Classification Assessment, Primary Ash Pond, Newton Power Station, Jasper County, Illinois," October 12, 2016.
- [10] J. Knutelski and J. Campbell, Annual CCR Surface Impoundment Inspection Report (per 40 CFR 257.83(b)(2)), Newton Power Station, Primary Ash Pond, January 18, 2016.
- [11] J. Knutelski and J. Campbell, Annual CCR Surface Impoundment Inspection Report (per 40 CFR 257.83(b)(2)), Newton Power Station, Primary Ash Pond, January 18, 2017.
- [12] J. Knutelski and J. Campbell, Annual CCR Surface Impoundment Inspection Report (per 40 CFR 257.83(b)(2)), Newton Power Station, Primary Ash Pond, February 7, 2018.
- [13] J. Knutelski, Annual Inspection by a Qualified Professional Engineer, 40 CFR 257.83(b), Newton Power Station, Primary Ash Pond, January 10, 2019.
- [14] Knutelski, James, Annual Inspection by a Qualified Professional Engineer, 40 CFR §257.83(b), Newton Power Station, Primary Ash Pond, January 10, 2020.
- [15] James Knutelski, Annual Inspection by a Qualified Professional Engineer, 40 CFR §257.83(b), Newton Power Station, Primary Ash Pond, January 06, 2021.
- [16] Geocyntec Consultants Inc., "Newton Piezo Measurements_20160121," Geocyntec Consultants Inc., Chesterfield, MO, 2021.

- [17] Weaver Consultants Group, "Dynegy, Collinsville, IL, 2015 Newton Topography," Collinsville, IL, December 2015.
- [18] IngenAE, "Luminant, Dynegy Midwest Generation, LLC, Newton Power Station, December 2020 Topography," Earth City, Missouri, March 12, 2021.
- [19] AECOM, "Draft CCR Unit Initial Site Visit Summary, Dynegy CCR Compliance Program," June 24, 2015.
- [20] Stantec Consulting Services Inc, "Illinois Power Generating Company, Newton Power Station, City of Newton, Jasper County, IL, Emergency Action Plan, Primary Ash Pond (NID # IL50719)," Fenton, MO, April 13, 2017.
- [21] U.S. Army Corps of Engineers, "Slope Stability, EM 1110-2-1902," October 31, 2003.
- [22] Natural Resources Conservation Service, Conservation Engineering Division, "Urban Hydrology for Small Watersheds (TR-55)," United States Department of Agriculture, June 1985.
- [23] F. A. Huff and J. R. Angel, "Frequency Distributions and Hydroclimatic Characteristics of Heavy Rainstorms in Illinois," State Water Survey Division, Department of Energy and Natural Resoruces, State of Illinois, Champaign, Illinois, 1989.
- [24] F. A. Huff, "Time Distributions of Heavy Rainstorms in Illinois," State Water Survey, Department of Energy and Natural Resoruces, State of Illinois, Champaign, Illinois, 1990.
- [25] Office of Natural Resources, "Procedural Guidelines for Preparation of Technical Data to be included in Applications for Permits for Construction and Maintenance of Dams," Department of Natural Resources, State of Illinois, Springfield, Illinois, Undated.

Periodic USEPA CCR Rule Certification Report Newton Power Plant October 11, 2021

DRAWINGS

 $GLP8027 \ NEW_PAP_Full_2021_Cert_Report_20211011$

INITIAL TO PERIODIC SURVEY COMPARISON SUMMARY						
MPOUNDMENT CUT FILL NET (CU. YD.)						
467,675	566,386	98,711(FILL)				
144,793	330,169	185,376 (FILL)				
322,591	235,677	86,913 (CUT)				
	RIODIC SURVEY CC CUT 467,675 144,793 322,591	RIODIC SURVEY COMPARISON SUMM CUT FILL 467,675 566,386 144,793 330,169 322,591 235,677				

Periodic USEPA CCR Rule Certification Report Newton Power Plant October 11, 2021

ATTACHMENTS

 $GLP8027 \ NEW_PAP_Full_2021_Cert_Report_20211011$

Attachment A

PAP Piezometer Data Plots

NOTES:

1. Piezometer data was taken from the spreadsheet titled "Newton Piezo Measurements_20160121", provided by the Newton Power Station.

PIEZ			
PERIOD			
NEWTON POWER PLANT			
NEWTON, ILLINOIS			
Geosyntec⊳		Figure	
consultants		1	
GLP8027	6/2/2021	1	

Attachment B

PAP Site Visit Photolog

	GEOSYNTEC C Photograpl	CONSULTANTS hic Record	Geosyntec [▷]	
Site Owner: Illinois	Site Owner: Illinois Power Generating Company Project Number: GLP8027			
CCR Unit: Primary	Ash Pond	Site: Newton Power Plant		
Photo: 05 Date: 5/21/2021 Direction Facing: E Comments: Example of the vegetative cover of the upstream side of the embankment and within the ash basin. Some tree growth and phragmite growth within the ash basin.				
Photo: 06 Date: 5/21/2021 Direction Facing: E Comments: Tallest downstream slope along the south embankment and Newton Lake. Complete vegetative cover with no signs of instability or evidence of rapid draw down.				

GEOSYNTEC CONSULTANTS Photographic Record Geosyntec Consultants			
Site Owner: Illinois Power Generating Company Project Number: GLP8027			
CCR Unit: Primary Ash Pond		Site: Newton Power Plant	
Photo: 11 Date: 5/21/2021 Direction Facing: N Comments: Discharge point for the secondary Pond outlet pipe.			
Photo: 12 Date: 5/21/2021 Direction Facing: N Comments: Secondary pond downstream side embankments. Good vegetative cover, no tree growth or signs of erosion or instability.			

GEOSYNTEC CONSULTANTS Photographic Record			Geosyntec [▷] consultants
Site Owner: Illinois	Power Generating Company	Project Number: GLP8027	
CCR Unit: Primary	Ash Pond	Site: Newton Power Plant	
Photo: 15 Date: 5/21/2021 Direction Facing: W Comments: Some erosion along the access ramp on the western embankment. Geosyntec recommended regrading the ramp as part of regular maintenance.			
Photo: 16 Date: 5/21/2021 Direction Facing: N Comments: Downstream side of the western embankment. Good vegetative cover, no tree growth or signs of erosion or instability.			

GEOSYNTEC CONSULTANTS Geosyntec ^D Photographic Record Consultants				
Site Owner: Illinois	Site Owner: Illinois Power Generating Company Project Number: GLP8027			
CCR Unit: Primary	Ash Pond	Site: Newton Power Plant		
Photo: 19				
Date: 5/21/2021				
Direction Facing: NW				
Comments: Downstream side of the northeastern embankment. Good vegetative cover, no tree growth or signs of erosion or instability.				
Photo: 20 Date: 5/21/2021 Direction Facing: S Comments: Erosion and poor vegetative cover underneath the sluice pipe racks along the northern embankment. Geosyntec recommended reseeding or applying erosion				
protective features on the side slope as part of regular maintenance.				

Attachment C

Periodic History of Construction Report Update Letter

October 2021

Illinois Power Generating Company 6725 North 500th Street Newton, Illinois 62448

Subject: Periodic History of Construction Report Update Letter USEPA Final CCR Rule, 40 CFR §257.73(c) Newton Power Plant Newton, Illinois

At the request of Illinois Power Generating Company (IPGC), Geosyntec Consultants (Geosyntec) has prepared this Letter to documents updates to the Initial History of Construction (HoC) report for the Newton Power Plant (NPP), also known as the Newton Power Station (NEW). The Initial HoC report was prepared by AECOM in October of 2016 [1] in accordance with 40 Code of Federal Regulations (CFR) §257.73(c) of the United States Environmental Protection Agency (USEPA) Coal Combustion Residuals Rule, known as the CCR Rule [2]. This letter also includes information required by Section 845.220(a)(1)(B) (Design and Construction Plans) of the state-specific Illinois Environmental Protection Agency (IEPA) Part 845 CCR Rule [3] that is not expressly required by §257.73(c).

BACKGROUND

The CCR Rule required that, by October 17, 2016, Initial HoC reports to be compiled for existing CCR surface impoundments with: (1) a height of five feet or more and a storage volume of 20 acre-feet or more, or (2) a height of 20 feet or more. The Initial HoC report was required to contain, to the extent feasible, the information specified in 40 CFR §257.73(c)(1)(i)-(xii). The Initial HoC report for NEW, which included the existing CCR surface impoundment, the Primary Ash Pond (PAP), was prepared and subsequently posted to IPGC's CCR Website prior to October 17, 2016.

The CCR Rule requires that Initial HoC to be updated if there is a significant change to any information complied in the Initial HoC report, as listed below:

Attachment C - NEW_PAP_HoC_Update_Letter_20211011

§ 257.73(c)(2): If there is a significant change to any information complied under paragraph (c)(1) of this section, the owner or operator of the CCR unit must update the relevant information and place it in the facility's operating record as required by § 257.105(f)(9).

IPGC retained Geosyntec to review the Initial HoC report, review reasonably and readily available information for the PAP generated since the Initial HoC report was prepared, and perform a site visit to NEW to evaluate if significant changes may have occurred since the Initial HoC report was prepared. This Letter contains the results of Geosyntec's evaluation and documents significant changes that have occurred at the PAP and NPP, as they pertain the requirements of $\frac{5257.73(c)(1)(i)}{(xii)}$

UPDATES TO HISTORY OF CONSTRUCTION REPORT

Geosyntec's evaluation for the NPP PAP determined that no known significant changes requiring updates to the information in the Initial HoC report pertaining to §257.73(c)(1)(ii)-(vi), (viii), (ix), (xi), and (xii) of the CCR Rule had occurred since the Initial HoC report was developed.

However, Geosyntec's evaluation determined that significant changes at the NEW PAP pertaining to \$257.73(c)(1)(i), (vii), and (x) of the CCR Rule had occurred since the Initial HoC report had been developed. Additionally, information how long the CCR surface impoundments have been operating and the types of CCR in the surface impoundments, as required by Section \$45.220(a)(1)(B) of the Part \$45 Rule were not included in the Initial HoC report, as this information is not required by the CCR Rule. Each change and the subsequent updates to the Initial HoC report is described within this section.

Section 845.220(a)(1)(B): A statement of ... how long the CCR surface impoundment has been in operation, and the types of CCR that have been placed in the surface impoundment.

Primary Ash Pond

The PAP was in operation from 1977 until today, for a total of approximately 44 years [1].

CCR placed in the PAP has included bottom ash and economizer ash, in addition to other non-CCR plant process wastewater [1].

Attachment C - NEW_PAP_HoC_Update_Letter_20211011

engineers | scientists | innovators

§ 257.73(c)(1)(i): The name and address of the person(s) owning or operating the CCR unit; the name associated with the CCR unit; and the identification number of the CCR unit if one has been assigned by the state.

A state identification numbers (IDs) for the PAP was assigned by the Illinois Environmental Protection Agency (IEPA). The ID is listed in **Table 1**.

Table 1 – IEI A ID Numbers			
CCR Surface Impoundment	State ID		
Primary Ash Pond (PAP)	W0798070001-01		

Table 1 – IEPA ID Numbers

§ 257.73(c)(1)(vii): At a scale that details engineering structures and appurtenances relevant to the design, construction, operation, and maintenance of the CCR unit, detailed dimensional drawings of the CCR unit, including a plan view and cross sections of the length and width of the CCR unit, showing all zones, foundation improvements, drainage provisions, spillways diversion ditches, outlets, instrument locations, and slope protection, in addition to the normal operating pool surface elevation and the maximum pool surface elevation following peak discharge from the inflow design flood, the expected maximum depth of CCR within the CCR surface impoundment, and any identifiable natural or manmade features that could adversely affect operation of the CCR unit due to malfunction or mis-operation.

Updated area-capacity curves were prepared for the PAP in 2021. These curves are provided in Figures 1.

Figure 1 – Area-Capacity Curve for Primary Ash Pond

Attachment C - NEW_PAP_HoC_Update_Letter_20211011

engineers | scientists | innovators

§ 257.73(c)(1)(x): A description of each spillway and diversion design features and capacities and calculations used in their determination.

Updated discharge capacity calculations for the existing spillways were prepared in 2021 using HydroCAD 10 modeling software. The calculations indicate that the PAP has sufficient storage capacity and will not overtop the embankments during the Probable Maximum Precipitation (PMP), 24-hour, storm event. The results of the calculations are provided in **Table 2**.

	Primary Ash Pond
Approximate Berm Minimum Elevation ¹ , ft	553.0
Starting Water Surface Elevation ¹ (SWSE), ft	537.0
Peak Water Surface Elevation ¹ (PWSE), ft	538.2
Time to Peak, hr	24.0
Surface Area ² , ac	272.0
Storage ³ , ac-ft	281.1

Table 2 –	Results of	f Undated	Discharge	Canacity	Calculations
	Itesuits 0	ι υρααιτά	Discharge	Capacity	Carculations

Notes:

¹Elevations are based on the NAVD88 datum

² Surface Area is defined as the water surface area at the PWSE

³Storage is defined as the volume between the SWSE and PWSE

CLOSING

This letter has been prepared to document Geosyntec's evaluation of changes that have occurred at the PAP at the NEW since the Initial HoC was developed, based on reasonably and readily available information provided by IPGC, observed by Geosyntec during the site visit, or generated by Geosyntec as part of subsequent calculations.

Sincerely,

PAlp

Panos Andonyadis, P.E. Senior Engineer

Y

John Seymour, P.E. Senior Principal

REFERENCES

- [1] AECOM, "History of Construction, USEPA Final CCR Rule, 40 CFR § 257.73(c), Newton Power Station, Newton, Illinois," October 2016.
- [2] United Stated Environmental Protection Agency, "40 CFR Parts 257 and 261, Hazardous and Solid Waste Management System, Disposal of Coal Combustion Residuals from Electric Utilities, Final Rule, 2015," 2015.
- [3] Illinois Environmental Protection Agency, "35 Ill. Adm. Code Part 845, Standards for the Disposal of Coal Combustion Residuals in Surface Impoundments," Springfield, IL, 2021.

Attachment D

Periodic Structural Stability and Safety Factor Assessment Analyses

Calculated By: MJNDate: 6/17/2016Checked By: VMChDate: 6/20/2016Modified By: PKDate: 9/01/2021Checked By:ZJFDate: 9/08/2021

Analysis: Pseudostatic (Undrained)

Horizontal Seismic Coefficient = 0.153g

Name: Upper Clay (Undrained)Model: Shear/Normal Fn.Unit Weight: 130 pcfStrength Function: Upper Clay (Undrained)Name: Embankment Fill (Undrained)Model: Shear/Normal Fn.Unit Weight: 130 pcfStrength Function: Embankment Fill (Undrained)Name: Lower Clay (Undrained)Model: Mohr-CoulombUnit Weight: 130 pcfCohesion': 5,000 psfPhi': 0 °Name: Ash (Undrained)Model: S=f(overburden)Unit Weight: 90 pcfTau/Sigma Ratio: 0.05Minimum Strength: 0 psf

Analysis: Long Term (Drained)

Name: Upper Clay (Drained)Model: Mohr-CoulombUnit Weight: 130 pcfCohesion': 0 psfPhi': 29 °Name: Ash (Drained)Model: Mohr-CoulombUnit Weight: 90 pcfCohesion': 0 psfPhi': 30 °Name: Lower Clay (Drained)Model: Mohr-CoulombUnit Weight: 130 pcfCohesion': 3,700 psfPhi': 33 °Name: Embankment Fill (Drained)Model: Mohr-CoulombUnit Weight: 130 pcfCohesion': 0 psfPhi': 33 °

Calculated By: MJNDate: 6/17/2016Checked By: VMChDate: 6/20/2016Modified By: PKDate: 9/01/2021Checked By:ZJFDate: 9/08/2021

Analysis: Surcharge (Drained)

Name: Upper Clay (Drained)Model: Mohr-CoulombUnit Weight: 130 pcfCohesion': 0 psfPhi': 29 °Name: Ash (Drained)Model: Mohr-CoulombUnit Weight: 90 pcfCohesion': 0 psfPhi': 30 °Name: Lower Clay (Drained)Model: Mohr-CoulombUnit Weight: 130 pcfCohesion': 3,700 psfPhi': 33 °Name: Embankment Fill (Drained)Model: Mohr-CoulombUnit Weight: 130 pcfCohesion': 0 psfPhi': 33 °

Calculated By: MJNDate: 6/17/2016Checked By: VMChDate: 6/20/2016Modified By: PKDate: 9/01/2021Checked By:ZJFDate: 9/08/2021

Analysis: Pseudostatic (Undrained)

Horizontal Seismic Coefficient = 0.153g

Calculated By: MJN D Checked By: VMCh D Modified By: PK D Checked By:ZJF D

Date: 6/17/2016 Date: 6/20/2016 Date: 9/01/2021 Date: 9/08/2021

Name: Upper Clay (Undrained)Model: Shear/Normal Fn.Unit Weight: 130 pcfStrength Function: Upper Clay (Undrained)Name: Embankment Fill (Undrained)Model: Shear/Normal Fn.Unit Weight: 130 pcfStrength Function: Embankment Fill (Undrained)Name: Lower Clay (Undrained)Model: Mohr-CoulombUnit Weight: 130 pcfCohesion': 5,000 psfPhi': 0 °Name: Ash (Undrained)Model: S=f(overburden)Unit Weight: 90 pcfTau/Sigma Ratio: 0.05Minimum Strength: 0 psf

Analysis: Sudden Drawdown

Calculated By: MJNDate: 6/17/2016Checked By: VMChDate: 6/20/2016Modified By: PKDate: 9/01/2021Checked By:ZJFDate: 9/08/2021

Name: Upper Clay (Drained) Model: Mohr-Coulomb Unit Weight: 130 pcf Cohesion': 0 psf Phi': 29 ° Cohesion R: 470 psf Phi R: 22 ° Piezometric Line After Drawdown: 2 Name: Ash (Drained) Unit Weight: 90 pcf Cohesion': 0 psf Phi': 30 ° Cohesion R: 0 psf Phi R: 0 ° Piezometric Line After Drawdown: 2 Model: Mohr-Coulomb Name: Lower Clay (Drained) Model: Mohr-Coulomb Unit Weight: 130 pcf Cohesion': 3,700 psf Phi': 33 ° Cohesion R: 0 psf Phi R: 0 ° Piezometric Line After Drawdown: 2 Name: Embankment Fill (Drained) Unit Weight: 130 pcf Cohesion': 0 psf Phi': 31 ° Cohesion R: 500 psf Phi R: 22 ° Piezometric Line After Drawdown: 2 Model: Mohr-Coulomb

Analysis: Long Term (Drained)

Name: Upper Clay (Drained)Model: Mohr-CoulombUnit Weight: 130 pcfCohesion': 0 psfPhi': 29 °Name: Ash (Drained)Model: Mohr-CoulombUnit Weight: 90 pcfCohesion': 0 psfPhi': 30 °Name: Lower Clay (Drained)Model: Mohr-CoulombUnit Weight: 130 pcfCohesion': 3,700 psfPhi': 33 °Name: Embankment Fill (Drained)Model: Mohr-CoulombUnit Weight: 130 pcfCohesion': 0 psfPhi': 33 °

\\STLOUISMO-01\Data\Company\Projects post 2014\GLP8027 CCR ReCert\500 Technical\509 NEW\509d Periodic Report\Revised SFA\PAP\Section C\ Section C PK 20210902.gsz

Analysis: Surcharge (Drained)

Name: Upper Clay (Drained)Model: Mohr-CoulombUnit Weight: 130 pcfCohesion': 0 psfPhi': 29 °Name: Ash (Drained)Model: Mohr-CoulombUnit Weight: 90 pcfCohesion': 0 psfPhi': 30 °Name: Lower Clay (Drained)Model: Mohr-CoulombUnit Weight: 130 pcfCohesion': 3,700 psfPhi': 33 °Name: Embankment Fill (Drained)Model: Mohr-CoulombUnit Weight: 130 pcfCohesion': 0 psfPhi': 33 °

\\STLOUISMO-01\Data\Company\Projects post 2014\GLP8027 CCR ReCert\500 Technical\509 NEW\509d Periodic Report\Revised SFA\PAP\Section C\ Section C PK 20210902.gsz

Analysis: Pseudostatic (Undrained)

Horizontal Seismic Coefficient = 0.153g

Name: Upper Clay (Undrained)Model: Shear/Normal Fn.Unit Weight: 130 pcfStrength Function: Upper Clay (Undrained)Name: Embankment Fill (Undrained)Model: Shear/Normal Fn.Unit Weight: 130 pcfStrength Function: Embankment Fill (Undrained)Name: Lower Clay (Undrained)Model: Mohr-CoulombUnit Weight: 130 pcfCohesion': 5,000 psfPhi': 0 °Name: Ash (Undrained)Model: S=f(overburden)Unit Weight: 90 pcfTau/Sigma Ratio: 0.05Minimum Strength: 0 psf

Materials Upper Clay (Undrained) Embankment Fill (Undrained) Lower Clay (Undrained) Ash (Undrained) <u>1.11</u> Newton Lake -Primary Ash Pond NEW-B010/P010A/P010B/SC017 Normal Pool Elevation: 537 ft Elevation (ft) Elevation (ft) Newton Lake Elevation: 506 ft NEW-SC019 Distance (ft)

\\STLOUISMO-01\Data\Company\Projects post 2014\GLP8027 CCR ReCert\500 Technical\509 NEW\509d Periodic Report\Revised SFA\PAP\Section C\ Section C PK 20210902.gsz

Analysis: Sudden Drawdown

Calculated By: MJNDate: 6/20/2016Checked By: VMChDate: 6/20/2016Modified By: PKDate: 9/01/2021Checked By:ZJFDate: 9/08/2021

 Name: Upper Clay (Drained)
 Model: Mohr-Coulomb
 Unit Weight: 130 pcf
 Cohesion': 0 psf
 Phi': 29 °
 Cohesion R: 470 psf
 Phi R: 22 °
 Piezometric Line After Drawdown: 2

 Name: Ash (Drained)
 Model: Mohr-Coulomb
 Unit Weight: 90 pcf
 Cohesion': 0 psf
 Phi': 30 °
 Cohesion R: 0 psf
 Phi R: 0 °
 Piezometric Line After Drawdown: 2

 Name: Lower Clay (Drained)
 Model: Mohr-Coulomb
 Unit Weight: 130 pcf
 Cohesion': 3,700 psf
 Phi': 33 °
 Cohesion R: 0 psf
 Phi R: 0 °
 Piezometric Line After Drawdown: 2

 Name: Embankment Fill (Drained)
 Model: Mohr-Coulomb
 Unit Weight: 130 pcf
 Cohesion': 0 psf
 Phi': 31 °
 Cohesion R: 500 psf
 Phi R: 22 °
 Piezometric Line After Drawdown: 2

Name: Ash (Drained) Model: Mohr-Coulomb Unit Weight: 90 pcf Cohesion': 0 psf Phi': 30 °

Name: Lower Clay (Drained) Model: Mohr-Coulomb Unit Weight: 130 pcf Cohesion': 3,700 psf Phi': 33 °

Model: Mohr-Coulomb Unit Weight: 130 pcf Cohesion': 0 psf Phi': 29 °

Analysis: Long Term (Drained)

Name: Upper Clay (Drained)

Calculated By: MJNDate: 6/20/2016Checked By: VMChDate: 6/20/2016Modified By: PKDate: 9/01/2021Checked By:ZJFDate: 9/08/2021

Name: Ash (Drained) Model: Mohr-Coulomb Unit Weight: 90 pcf Cohesion': 0 psf Phi': 30 °

Name: Lower Clay (Drained) Model: Mohr-Coulomb Unit Weight: 130 pcf Cohesion': 3,700 psf Phi': 33 °

Model: Mohr-Coulomb Unit Weight: 130 pcf Cohesion': 0 psf Phi': 29 °

Analysis: Surcharge (Drained)

Name: Upper Clay (Drained)

Calculated By: MJNDate: 6/20/2016Checked By: VMChDate: 6/20/2016Modified By: PKDate: 9/01/2021Checked By:ZJFDate: 9/08/2021

Analysis: Pseudostatic (Undrained)

Horizontal Seismic Coefficient = 0.153g

 Name: Upper Clay (Undrained)
 Model: Shear/Normal Fn.
 Unit Weight: 130 pcf
 Strength Function: Upper Clay (Undrained)

 Name: Embankment Fill (Undrained)
 Model: Shear/Normal Fn.
 Unit Weight: 130 pcf
 Strength Function: Embankment Fill (Undrained)

 Name: Lower Clay (Undrained)
 Model: Mohr-Coulomb
 Unit Weight: 130 pcf
 Cohesion': 5,000 psf
 Phi': 0 °

 Name: Ash (Undrained)
 Model: S=f(overburden)
 Unit Weight: 90 pcf
 Tau/Sigma Ratio: 0.05
 Minimum Strength: 0 psf

Materials Upper Clay (Undrained) Embankment Fill (Undrained) Lower Clay (Undrained) Ash (Undrained) 1.23 Primary Ash Pond Newton Lake NEW-B009/P009 Normal Pool Elevation: 537 ft Elevation (ft) E NEW-SC015 Newton Lake Elevation: 506 ft Elevation Distance (ft)

\\STLOUISMO-01\Data\Company\Projects post 2014\GLP8027 CCR ReCert\500 Technical\509 NEW\509d Periodic Report\Revised SFA\PAP\Section D\ Section D PK 20210902.gsz
Analysis: Sudden Drawdown

Calculated By: MJNDate: 6/20/2016Checked By: VMChDate: 6/20/2016Modified By: PKDate: 9/01/2021Checked By:ZJFDate: 9/08/2021

 Name: Upper Clay (Drained)
 Model: Mohr-Coulomb
 Unit Weight: 130 pcf
 Cohesion': 0 psf
 Phi': 29 °
 Cohesion R: 470 psf
 Phi R: 22 °
 Piezometric Line After Drawdown: 2

 Name: Ash (Drained)
 Model: Mohr-Coulomb
 Unit Weight: 90 pcf
 Cohesion': 0 psf
 Phi': 30 °
 Cohesion R: 0 psf
 Phi R: 0 °
 Piezometric Line After Drawdown: 2

 Name: Lower Clay (Drained)
 Model: Mohr-Coulomb
 Unit Weight: 130 pcf
 Cohesion': 3,700 psf
 Phi': 33 °
 Cohesion R: 0 psf
 Phi R: 0 °
 Piezometric Line After Drawdown: 2

 Name: Embankment Fill (Drained)
 Model: Mohr-Coulomb
 Unit Weight: 130 pcf
 Cohesion': 0 psf
 Phi': 31 °
 Cohesion R: 500 psf
 Phi R: 22 °
 Piezometric Line After Drawdown: 2

Analysis: Long Term (Drained)

Calculated By: MJNDate: 6/20/2016Checked By: VMChDate: 6/20/2016Modified By: PKDate: 9/01/2021Checked By:ZJFDate: 9/08/2021

Analysis: Surcharge (Drained)

Calculated By: MJNDate: 6/20/2016Checked By: VMChDate: 6/20/2016Modified By: PKDate: 9/01/2021Checked By:ZJFDate: 9/08/2021

Analysis: Pseudostatic (Undrained)

Horizontal Seismic Coefficient = 0.153g

Calculated By: MJNDate: 6/20/2016Checked By: VMChDate: 6/20/2016Modified By: PKDate: 9/01/2021Checked By:ZJFDate: 9/08/2021

Name: Upper Clay (Undrained) Model: Shear/Normal Fn. Unit Weight: 130 pcf Strength Function: Upper Clay (Undrained) Name: Embankment Fill (Undrained) Model: Shear/Normal Fn. Unit Weight: 130 pcf Strength Function: Embankment Fill (Undrained) Name: Lower Clay (Undrained) Model: Mohr-Coulomb Unit Weight: 130 pcf Cohesion': 5,000 psf Phi': 0 °

Analysis: Long Term (Drained)

Calculated By: ZJFDate: 5/23/2016Checked By: VMChDate: 6/16/2016Modified By: PKDate: 9/01/2021Checked By:ZJFDate: 9/08/2021

Analysis: Surcharge (Drained)

Calculated By: ZJFDate: 5/23/2016Checked By: VMChDate: 6/16/2016Modified By: PKDate: 9/01/2021Checked By:ZJFDate: 9/08/2021

Analysis: Pseudostatic (Undrained)

Calculated By: ZJFDate: 5/23/2016Checked By: VMChDate: 6/16/2016Modified By: PKDate: 9/01/2021Checked By:ZJFDate: 9/08/2021

Name: Upper Clay (Undrained)Model: Shear/Normal Fn.Unit Weight: 130 pcfStrength Function: Upper Clay (Undrained)Name: Embankment Fill (Undrained)Model: Shear/Normal Fn.Unit Weight: 130 pcfStrength Function: Embankment Fill (Undrained)Name: Lower Clay (Undrained)Model: Mohr-CoulombUnit Weight: 130 pcfCohesion': 5,000 psfPhi': 0 °

Analysis: Long Term (Drained)

Calculated By: ZJFDate: 5/23/16Checked By: VMChDate: 06/20/16Modified By: PKDate: 9/01/21Checked By:ZJFDate: 9/08/21

Analysis: Surcharge (Drained)

Calculated By: ZJFDate: 5/23/16Checked By: VMChDate: 06/20/16Modified By: PKDate: 9/01/21Checked By:ZJFDate: 9/08/21

Analysis: Pseudostatic (Undrained)

Calculated By: ZJFDate: 5/23/16Checked By: VMChDate: 06/20/16Modified By: PKDate: 9/01/21Checked By:ZJFDate: 9/08/21

Horizontal Seismic Coefficient = 0.153 g

Name: Upper Clay (Undrained)Model: Shear/Normal Fn.Unit Weight: 130 pcfStrength Function: Upper Clay (Undrained)Name: Embankment Fill (Undrained)Model: Shear/Normal Fn.Unit Weight: 130 pcfStrength Function: Embankment Fill (Undrained)Name: Lower Clay (Undrained)Model: Mohr-CoulombUnit Weight: 130 pcfCohesion': 5,000 psfPhi': 0 °

Analysis: Long Term (Drained)

Calculated By: ZJFDate: 5/23/16Checked By: VMChDate: 6/20/16Modified By: PKDate: 9/01/21Checked By:ZJFDate: 9/08/21

Analysis: Surcharge (Drained)

Calculated By: ZJFDate: 5/23/16Checked By: VMChDate: 6/20/16Modified By: PKDate: 9/01/21Checked By:ZJFDate: 9/08/21

Analysis: Pseudostatic (Undrained)

Calculated By: ZJFDate: 5/23/16Checked By: VMChDate: 6/20/16Modified By: PKDate: 9/01/21Checked By:ZJFDate: 9/08/21

Horizontal Seismic Coefficient = 0.153 g

Name: Upper Clay (Undrained) Model: Shear/Normal Fn. Unit Weight: 130 pcf Strength Function: Upper Clay (Undrained) Name: Embankment Fill (Undrained) Model: Shear/Normal Fn. Unit Weight: 130 pcf Strength Function: Embankment Fill (Undrained) Name: Lower Clay (Undrained) Model: Mohr-Coulomb Unit Weight: 130 pcf Cohesion': 5,000 psf Phi': 0 °

Model: Mohr-Coulomb Unit Weight: 90 pcf Cohesion': 0 psf Phi': 30 °

Model: Mohr-Coulomb Unit Weight: 130 pcf Cohesion': 3,700 psf Phi': 33 °

Analysis: Long Term (Drained)

Name: Ash (Drained)

Name: Lower Clay (Drained)

Calculated By: NDSDate: 5/25/16Checked By: VMChDate: 6/20/16Modified By: PKDate: 9/01/21Checked By:ZJFDate: 9/08/21

Model: Mohr-Coulomb Unit Weight: 90 pcf Cohesion': 0 psf Phi': 30 °

Model: Mohr-Coulomb Unit Weight: 130 pcf Cohesion': 3,700 psf Phi': 33 °

Analysis: Surcharge (Drained)

Name: Ash (Drained)

Name: Lower Clay (Drained)

Calculated By: NDSDate: 5/25/16Checked By: VMChDate: 6/20/16Modified By: PKDate: 9/01/21Checked By:ZJFDate: 9/08/21

Analysis: Pseudostatic (Undrained)

Calculated By: NDSDate: 5/25/16Checked By: VMChDate: 6/20/16Modified By: PKDate: 9/01/21Checked By:ZJFDate: 9/08/21

Horizontal Seismic Coefficient = 0.153 g

 Name: Embankment Fill (Undrained)
 Model: Shear/Normal Fn.
 Unit Weight: 130 pcf
 Strength Function: Embankment Fill (Undrained)

 Name: Lower Clay (Undrained)
 Model: Mohr-Coulomb
 Unit Weight: 130 pcf
 Cohesion': 5,000 psf
 Phi': 0 °

 Name: Ash (Undrained)
 Model: S=f(overburden)
 Unit Weight: 90 pcf
 Tau/Sigma Ratio: 0.05
 Minimum Strength: 0 psf

Analysis: Sudden Drawdown

Calculated By: NDSDate: 5/25/16Checked By: VMChDate: 6/20/16Modified By: PKDate: 9/01/21Checked By:ZJFDate: 9/08/21

Name: Ash (Drained) Model: Mohr-Coulomb Unit Weight: 90 pcf Cohesion': 0 psf Phi': 30 ° Cohesion R: 0 psf Phi R: 0 ° Piezometric Line After Drawdown: 2 Name: Lower Clay (Drained) Model: Mohr-Coulomb Unit Weight: 130 pcf Cohesion': 3,700 psf Phi': 33 ° Cohesion R: 0 psf Phi R: 0 ° Piezometric Line After Drawdown: 2 Name: Embankment Fill (Drained) Model: Mohr-Coulomb Unit Weight: 130 pcf Cohesion': 0 psf Phi': 31 ° Cohesion R: 500 psf Phi R: 22 ° Piezometric Line After Drawdown: 2

Analysis: Long Term (Drained)

Calculated By: NDSDate: 5/31/16Checked By: VMChDate: 6/20/16Modified By: PKDate: 9/01/21Checked By:ZJFDate: 9/08/21

Name: Upper Clay (Drained)Model: Mohr-CoulombUnit Weight: 130 pcfCohesion': 0 psfPhi': 29 °Name: Lower Clay (Drained)Model: Mohr-CoulombUnit Weight: 130 pcfCohesion': 3,700 psfPhi': 33 °Name: Embankment Fill (Drained)Model: Mohr-CoulombUnit Weight: 130 pcfCohesion': 0 psfPhi': 33 °

Analysis: Surcharge (Drained)

Calculated By: NDSDate: 5/31/16Checked By: VMChDate: 6/20/16Modified By: PKDate: 9/01/21Checked By:ZJFDate: 9/08/21

Name: Upper Clay (Drained)Model: Mohr-CoulombUnit Weight: 130 pcfCohesion': 0 psfPhi': 29 °Name: Lower Clay (Drained)Model: Mohr-CoulombUnit Weight: 130 pcfCohesion': 3,700 psfPhi': 33 °Name: Embankment Fill (Drained)Model: Mohr-CoulombUnit Weight: 130 pcfCohesion': 0 psfPhi': 33 °

Analysis: Pseudostatic (Undrained)

Calculated By: NDSDate: 5/31/16Checked By: VMChDate: 6/20/16Modified By: PKDate: 9/01/21Checked By:ZJFDate: 9/08/21

Horizontal Seismic Coefficient = 0.153 g

Name: Upper Clay (Undrained)Model: Shear/Normal Fn.Unit Weight: 130 pcfStrength Function: Upper Clay (Undrained)Name: Embankment Fill (Undrained)Model: Shear/Normal Fn.Unit Weight: 130 pcfStrength Function: Embankment Fill (Undrained)Name: Lower Clay (Undrained)Model: Undrained (Phi=0)Unit Weight: 130 pcfCohesion': 5,000 psf

Analysis: Sudden Drawdown

Calculated By: NDSDate: 5/31/16Checked By: VMChDate: 6/20/16Modified By: PKDate: 9/01/21Checked By:ZJFDate: 9/08/21

Name: Upper Clay (Drained) Cohesion R: 470 psf Piezometric Line After Drawdown: 2 Model: Mohr-Coulomb Unit Weight: 130 pcf Cohesion': 0 psf Phi': 29 ° Phi R: 22 ° Name: Lower Clay (Drained) Model: Mohr-Coulomb Unit Weight: 130 pcf Cohesion': 3,700 psf Phi': 33 ° Cohesion R: 0 psf Phi R: 0 ° Piezometric Line After Drawdown: 2 Name: Embankment Fill (Drained) Model: Mohr-Coulomb Unit Weight: 130 pcf Cohesion': 0 psf Phi': 31 ° Cohesion R: 500 psf Phi R: 22 ° Piezometric Line After Drawdown: 2

Attachment E

Periodic Inflow Design Flood Control System Plan Analyses

Figure based on IngenAE 2020 Site Topo

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
423.520	98	(1PWS, 2PWS)
423.520	98	TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	
0.000	HSG B	
0.000	HSG C	
0.000	HSG D	
423.520	Other	1PWS, 2PWS
423.520		TOTAL AREA

Ground Covers (all nodes)

HSG	i-A HS	G-B HS	G-C HSG	-D Othe	er Total	Ground	Subcatchment
(acr	es) (ac	res) (ac	res) (acro	es) (acre	s) (acres)	Cover	Numbers
0.0	00 0.	000 0.	0.0 0.0	00 423.52	423.520		1PWS, 2PWS
0.0	00 0.	000 0.	000 0.0	00 423.52	423.520	TOTAL	
						AREA	

Pipe Listing (all nodes)

Line#	Node	In-Invert	Out-Invert	Length	Slope	n	Diam/Width	Height	Inside-Fill
	Number	(feet)	(feet)	(feet)	(ft/ft)		(inches)	(inches)	(inches)
1	1P	512.18	508.00	220.0	0.0190	0.013	28.0	0.0	0.0
2	2P	505.00	504.33	226.0	0.0030	0.013	28.0	0.0	0.0

 08252021_Newton_Power_St Huff 0-10sm 3Q 24.00 hrs
 1000yr - 24hr Huff Q3 Rainfall=9.01"

 Prepared by SCCM
 Printed 8/27/2021

 HydroCAD® 10.00-26 s/n 07657 © 2020 HydroCAD Software Solutions LLC
 Page 6

Time span=0.00-400.00 hrs, dt=0.15 hrs, 2668 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment1PWS: Prin	Nary AshRunoff Area=411.520 ac100.00% ImperviousRunoff Depth=8.77"Tc=6.0 minCN=98Runoff=408.16 cfs300.740 af
Subcatchment2PWS: Sec	ondary Pond Runoff Area=12.000 ac 100.00% Impervious Runoff Depth=8.77" Tc=6.0 min CN=98 Runoff=11.90 cfs 8.770 af
Pond 1P: Primary Ash Por	d Peak Elev=538.16' Storage=2,831.874 af Inflow=408.16 cfs 300.740 af Outflow=22.22 cfs 260.432 af
Pond 2P: Secondary Settli Primary	ng PondPeak Elev=519.90'Storage=64.320 afInflow=28.79 cfs269.202 af=61.56 cfs333.516 afSecondary=0.00 cfs0.000 afOutflow=61.56 cfs333.516 af
Link 1L: Lake Newton	Inflow=61.56 cfs 333.516 af Primary=61.56 cfs 333.516 af
Link 1S: Ash Sluice	Manual Hydrograph above 13.37 cfs below 13.37 cfs Inflow=13.37 cfs 171.338 af Primary=0.00 cfs 0.000 af Secondary=13.37 cfs 171.338 af
Link O: Other	Manual Hydrograph above 1.54 cfs below 1.54 cfs Inflow=1.54 cfs 50.935 af Primary=0.00 cfs 0.000 af Secondary=1.54 cfs 50.935 af
Link WW: Wastewater	Manual Hydrograph above 23.39 cfs below 23.39 cfs Inflow=23.39 cfs 201.231 af Primary=0.00 cfs 0.000 af Secondary=23.39 cfs 201.231 af
Total Runoff Are	a = 423.520 ac Runoff Volume = 309.510 af Average Runoff Depth = 8.77" 0.00% Pervious = 0.000 ac 100.00% Impervious = 423.520 ac

 08252021_Newton_Power_St Huff 0-10sm 3Q 24.00 hrs
 1000yr - 24hr Huff Q3 Rainfall=9.01"

 Prepared by SCCM
 Printed 8/27/2021

 HydroCAD® 10.00-26 s/n 07657 © 2020 HydroCAD Software Solutions LLC
 Page 7

Summary for Subcatchment 1PWS: Primary Ash Pond Watershed

[49] Hint: Tc<2dt may require smaller dt

Runoff = 408.16 cfs @ 15.60 hrs, Volume= 300.740 af, Depth= 8.77"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-400.05 hrs, dt= 0.15 hrs Huff 0-10sm 3Q 24.00 hrs 1000yr - 24hr Huff Q3 Rainfall=9.01"

 08252021_Newton_Power_St Huff 0-10sm 3Q 24.00 hrs
 1000yr - 24hr Huff Q3 Rainfall=9.01"

 Prepared by SCCM
 Printed 8/27/2021

 HydroCAD® 10.00-26 s/n 07657 © 2020 HydroCAD Software Solutions LLC
 Page 8

Summary for Subcatchment 2PWS: Secondary Pond Watershed

[49] Hint: Tc<2dt may require smaller dt

Runoff = 11.90 cfs @ 15.60 hrs, Volume= 8.770 af, Depth= 8.77"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-400.05 hrs, dt= 0.15 hrs Huff 0-10sm 3Q 24.00 hrs 1000yr - 24hr Huff Q3 Rainfall=9.01"

Summary for Pond 1P: Primary Ash Pond

Inflow Area	=	411.520 ac,10	0.00% Impervious,	Inflow Depth = 8	.77" for 1000yr - 24hr Huff Q3 event
Inflow	=	408.16 cfs @	15.60 hrs, Volume	= 300.740 af	
Outflow :	=	22.22 cfs @	24.18 hrs, Volume	= 260.432 af	,Atten= 95%,Lag= 514.8 min
Primary	=	22.22 cfs @	24.18 hrs, Volume	= 260.432 af	-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-400.05 hrs, dt= 0.15 hrs Starting Elev= 537.00' Surf.Area= 0.000 ac Storage= 2,550.800 af Peak Elev= 538.16' @ 24.18 hrs Surf.Area= 0.000 ac Storage= 2,831.874 af (281.074 af above start)

Plug-Flow detention time= (not calculated: initial storage exceeds outflow) Center-of-Mass det. time= 6,560.9 min (7,370.8 - 809.8)

Volume	Invert	Avail.Stora	ge Storage Description
#1	495.00'	7,623.000	af Custom Stage DataListed below
Elevation	Cum.S	store	
(feet)	(acre-f	feet)	
495.00	0.	.000	
500.00	18.	.000	
505.00	51.	.000	XV
510.00	104.	.000	
515.00	192.	.000	
520.00	377.	.000	
525.00	752.	.000	
530.00	1,312.	.000	
535.00	2,068.	.000	
540.00	3,275.	.000	
545.00	4,965.	.000	
550.00	6,842	.000	
551.00	7,231	.000	
552.00	7,623.	.000	
Device F	Routing	Invert	Outlet Devices
#1 F	Primary	512.18'	28.0" Round Culvert L= 220.0' Ke= 0.820
			Inlet / Outlet Invert= 512.18' / 508.00' S= 0.0190 '/' Cc= 0.900
#2 Г)evice 1	537 00'	28 0" Horiz Orifice/Grate $C = 0.600$
<i>π</i> ∠ L		007.00	l imited to weir flow at low heads

Primary OutFlow Max=22.22 cfs @ 24.18 hrs HW=538.16' TW=510.37' (Dynamic Tailwater) 1=Culvert (Passes 22.22 cfs of 84.54 cfs potential flow) 2=Orifice/Grate (Orifice Controls 22.22 cfs @ 5.20 fps)

Pond 1P: Primary Ash Pond
Summary for Pond 2P: Secondary Settling Pond

Inflow Area	=	423.520 ac,10	0.00% Impervious	, Inflow Depth >	7.63" fo	r 1000yr - 2	4hr Huff Q3 event
Inflow =	=	28.79 cfs @	16.35 hrs, Volum	e= 269.202	af	-	
Outflow =	=	61.56 cfs @	0.00 hrs, Volum	e= 333.516	af, Atten=	0%, Lag=	0.0 min
Primary =	=	61.56 cfs @	0.00 hrs, Volum	e= 333.516	af		
Secondary =	=	0.00 cfs @	0.00 hrs, Volum	e= 0.000	af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-400.05 hrs, dt= 0.15 hrs Starting Elev= 519.90' Surf.Area= 0.000 ac Storage= 64.320 af Peak Elev= 519.90' @ 0.00 hrs Surf.Area= 0.000 ac Storage= 64.320 af

Plug-Flow detention time= 67.0 min calculated for 269.095 af (100% of inflow) Center-of-Mass det. time= (not calculated: outflow precedes inflow)

Volume	Invert	Avail.Storage	e Storage Description
#1	505.00'	168.000 a	f Custom Stage DataListed below
Elevatio (fee	on Cum.S t) (acre-f	tore eet)	
505.0	0 0.	.000	
510.0	0 3.	.000	XV
515.0	0 31.	.000	
520.0	0 65.	.000	
525.0	0 105.	.000	
530.0	0 149.	.000	
531.0	0 158.	.000	
532.0	0 168.	.000	
Device	Routing	Invert (Dutlet Devices
#1	Primary	505.00' 2	28.0" Round Culvert L= 226.0' Ke= 0.820
		l	nlet / Outlet Invert= 505.00' / 504.33' S= 0.0030 '/' Cc= 0.900
		r	n= 0.013, Flow Area= 4.28 sf
#2	Secondary	528.50' 5	5.0' long Broad-Crested Rectangular Weir
		ŀ	lead (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80
		C	Coef. (English) 2.65 2.65 2.65 2.65 2.65 2.65 2.65 2.65

Primary OutFlow Max=61.56 cfs @ 0.00 hrs HW=519.90' TW=504.33' (Dynamic Tailwater) -1=Culvert (Barrel Controls 61.56 cfs @ 14.40 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=519.90' TW=504.33' (Dynamic Tailwater) 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 2P: Secondary Settling Pond

Summary for Link 1L: Lake Newton

Inflow Are	ea =	423.520 ac,100	0.00% Impervious, Infl	ow Depth > 9	9.45" for	1000yr - 24hr Huff Q3 event
Inflow	=	61.56 cfs @	0.00 hrs, Volume=	333.516 at	f	
Primary	=	61.56 cfs @	0.00 hrs, Volume=	333.516 at	f, Atten= ()%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-400.05 hrs, dt= 0.15 hrs

Fixed water surface Elevation= 504.33'

Link 1L: Lake Newton

Summary for Link 1S: Ash Sluice

Inflow	=	13.37	cfs @	0.00 hrs,	Volume=	: 17	1.338 af			
Primary	=	0.00	cfs @	0.00 hrs,	Volume=	: (0.000 af,	Atten= 10	0%, Lag=	0.0 min
Secondary	=	13.37	cfs @	0.00 hrs,	Volume=	: 17	1.338 af			
Primary ou	tflow =	Inflow	above	13.37 cfs b	elow 13.3	7 cfs, Tim	e Span=	0.00-400.0	5 hrs, dt=	0.15 hrs
132 Point n	nanual	hydrog	graph,	To= 0.00 h	rs, dt= 2.0	00 hrs, cf	s =			
13.37	13.3	37	13.37	13.37	13.37	13.37	13.37	13.37	0.00	0.00
0.00	0.0	00	0.00	13.37	13.37	13.37	13.37	13.37	13.37	13.37
0.00	0.0	00	0.00	0.00	0.00	13.37	13.37	13.37	13.37	13.37
13.37	13.3	37	0.00	0.00	0.00	0.00	0.00	13.37	13.37	13.37
13.37	13.3	37	13.37	13.37	0.00	0.00	0.00	0.00	0.00	13.37
13.37	13.3	37	13.37	13.37	13.37	13.37	0.00	0.00	0.00	0.00
0.00	13.3	37	13.37	13.37	13.37	13.37	13.37	13.37	0.00	0.00
0.00	0.0	00	0.00	13.37	13.37	13.37	13.37	13.37	13.37	13.37
0.00	0.0	00	0.00	0.00	0.00	13.37	13.37	13.37	13.37	13.37
13.37	13.3	37	0.00	0.00	0.00	0.00	0.00	13.37	13.37	13.37
13.37	13.3	37	13.37	13.37	0.00	0.00	0.00	0.00	0.00	13.37
13.37	13.3	37	13.37	13.37	13.37	13.37	0.00	0.00	0.00	0.00
0.00	13.3	37	13.37	13.37	13.37	13.37	13.37	13.37	0.00	0.00
0.00	0.0	00								

Link 1S: Ash Sluice

Summary for Link O: Other

Inflow	=	1.54 cfs @	0.00 hrs, Volume=	50.935 af	
Primary	=	0.00 cfs @	0.00 hrs, Volume=	0.000 af,	Atten= 100%, Lag= 0.0 min
Secondary	=	1.54 cfs @	0.00 hrs, Volume=	50.935 af	-

Primary outflow = Inflow above 1.54 cfs below 1.54 cfs, Time Span= 0.00-400.05 hrs, dt= 0.15 hrs

126 Point manual hydrograph, To= 0.00 hrs, dt= 5.00 hrs, cfs =

1.54	1.54	1.54	1.54	1.54	1.54	1.54	1.54	1.54	1.54
1.54	1.54	1.54	1.54	1.54	1.54	1.54	1.54	1.54	1.54
1.54	1.54	1.54	1.54	1.54	1.54	1.54	1.54	1.54	1.54
1.54	1.54	1.54	1.54	1.54	1.54	1.54	1.54	1.54	1.54
1.54	1.54	1.54	1.54	1.54	1.54	1.54	1.54	1.54	1.54
1.54	1.54	1.54	1.54	1.54	1.54	1.54	1.54	1.54	1.54
1.54	1.54	1.54	1.54	1.54	1.54	1.54	1.54	1.54	1.54
1.54	1.54	1.54	1.54	1.54	1.54	1.54	1.54	1.54	1.54
1.54	1.54	1.54	1.54	1.54	1.54	1.54	1.54	1.54	1.54
1.54	1.54	1.54	1.54	1.54	1.54	1.54	1.54	1.54	1.54
1.54	1.54	1.54	1.54	1.54	1.54	1.54	1.54	1.54	1.54
1.54	1.54	1.54	1.54	1.54	1.54	1.54	1.54	1.54	1.54
1.54	1.54	1.54	1.54	1.54	1.54				

Link O: Other

Summary for Link WW: Wastewater

Inflow	=	23.39 cfs @	0.00 hrs, Volume=	201.231 af		
Primary	=	0.00 cfs @	0.00 hrs, Volume=	0.000 af, A	tten= 100%, L	_ag= 0.0 min
Secondary	=	23.39 cfs @	0.00 hrs, Volume=	201.231 af		-

Primary outflow = Inflow above 23.39 cfs below 23.39 cfs, Time Span= 0.00-400.05 hrs, dt= 0.15 hrs

101 Point manual hydrograph, To= 0.00 hrs, dt= 2.00 hrs, cfs =

23.39	23.39	23.39	23.39	23.39	23.39	23.39	0.00	0.00	0.00
0.00	0.00	0.00	23.39	23.39	23.39	23.39	23.39	23.39	0.00
0.00	0.00	0.00	0.00	0.00	23.39	23.39	23.39	23.39	23.39
23.39	0.00	0.00	0.00	0.00	0.00	0.00	23.39	23.39	23.39
23.39	23.39	23.39	0.00	0.00	0.00	0.00	0.00	0.00	23.39
23.39	23.39	23.39	23.39	23.39	0.00	0.00	0.00	0.00	0.00
0.00	23.39	23.39	23.39	23.39	23.39	23.39	0.00	0.00	0.00
0.00	0.00	0.00	23.39	23.39	23.39	23.39	23.39	23.39	0.00
0.00	0.00	0.00	0.00	0.00	23.39	23.39	23.39	23.39	23.39
23.39	0.00	0.00	0.00	0.00	0.00	0.00	23.39	23.39	23.39
23.39									

Link WW: Wastewater

